Magnetic-resonance-based measurement of electromagnetic fields and conductivity in vivo using single current administration-A machine learning approach
- PMID: 34293014
- PMCID: PMC8297925
- DOI: 10.1371/journal.pone.0254690
Magnetic-resonance-based measurement of electromagnetic fields and conductivity in vivo using single current administration-A machine learning approach
Abstract
Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) is a newly developed technique that combines MR-based measurements of magnetic flux density with diffusion tensor MRI (DT-MRI) data to reconstruct electrical conductivity tensor distributions. DT-MREIT techniques normally require injection of two independent current patterns for unique reconstruction of conductivity characteristics. In this paper, we demonstrate an algorithm that can be used to reconstruct the position dependent scale factor relating conductivity and diffusion tensors, using flux density data measured from only one current injection. We demonstrate how these images can also be used to reconstruct electric field and current density distributions. Reconstructions were performed using a mimetic algorithm and simulations of magnetic flux density from complementary electrode montages, combined with a small-scale machine learning approach. In a biological tissue phantom, we found that the method reduced relative errors between single-current and two-current DT-MREIT results to around 10%. For in vivo human experimental data the error was about 15%. These results suggest that incorporation of machine learning may make it easier to recover electrical conductivity tensors and electric field images during neuromodulation therapy without the need for multiple current administrations.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Seo JK, Woo EJ. Magnetic resonance electrical impedance tomography. SIAM Rev. 2011; 53(1):40–68. doi: 10.1137/080742932 - DOI
-
- Joy MLG, Scott GC and Henkelman M. In vivo detection of applied electric currents by magnetic resonnace imaging. Magn. Reson. Imaging. 1989; 7(1):89–94. - PubMed
-
- Scott GC et al. Sensitivity of magnetic resonance current density imaging. J. Magn. Reson. 1992; 97(2):235–254. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
