Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 23;66(17).
doi: 10.1088/1361-6560/ac16ec.

Synthetic pulmonary perfusion images from 4DCT for functional avoidance using deep learning

Affiliations

Synthetic pulmonary perfusion images from 4DCT for functional avoidance using deep learning

Evan M Porter et al. Phys Med Biol. .

Abstract

Purpose.To develop and evaluate the performance of a deep learning model to generate synthetic pulmonary perfusion images from clinical 4DCT images for patients undergoing radiotherapy for lung cancer.Methods. A clinical data set of 58 pre- and post-radiotherapy99mTc-labeled MAA-SPECT perfusion studies (32 patients) each with contemporaneous 4DCT studies was collected. Using the inhale and exhale phases of the 4DCT, a 3D-residual network was trained to create synthetic perfusion images utilizing the MAA-SPECT as ground truth. The training process was repeated for a 50-imaging study, five-fold validation with twenty model instances trained per fold. The highest performing model instance from each fold was selected for inference upon the eight-study test set. A manual lung segmentation was used to compute correlation metrics constrained to the voxels within the lungs. From the pre-treatment test cases (N = 5), 50th percentile contours of well-perfused lung were generated from both the clinical and synthetic perfusion images and the agreement was quantified.Results. Across the hold-out test set, our deep learning model predicted perfusion with a Spearman correlation coefficient of 0.70 (IQR: 0.61-0.76) and a Pearson correlation coefficient of 0.66 (IQR: 0.49-0.73). The agreement of the functional avoidance contour pairs was Dice of 0.803 (IQR: 0.750-0.810) and average surface distance of 5.92 mm (IQR: 5.68-7.55).Conclusion. We demonstrate that from 4DCT alone, a deep learning model can generate synthetic perfusion images with potential application in functional avoidance treatment planning.

Trial registration: ClinicalTrials.gov NCT02528942.

Keywords: 4DCT; MAA-SPECT; deep learning; functional avoidance; synthetic images.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources