Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul;9(7):e002723.
doi: 10.1136/jitc-2021-002723.

Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead

Affiliations
Review

Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead

Kedar Kirtane et al. J Immunother Cancer. 2021 Jul.

Abstract

While immune checkpoint inhibitors (ICIs) have ushered in major changes in standards of care for many solid tumor malignancies, primary and acquired resistance is common. Insufficient antitumor T cells, inadequate function of these cells, and impaired formation of memory T cells all contribute to resistance mechanisms to ICI. Adoptive cellular therapy (ACT) is a form of immunotherapy that is rapidly growing in clinical investigation and has the potential to overcome these limitations by its ability to augment the number, specificity, and reactivity of T cells against tumor tissue. ACT has revolutionized the treatment of hematologic malignancies, though the use of ACT in solid tumor malignancies is still in its early stages. There are currently three major modalities of ACT: tumor-infiltrating lymphocytes (TILs), genetically engineered T-cell receptors (TCRs), and chimeric antigen receptor (CAR) T cells. TIL therapy involves expansion of a heterogeneous population of endogenous T cells found in a harvested tumor, while TCRs and CAR T cells involve expansion of a genetically engineered T-cell directed toward specific antigen targets. In this review, we explore the potential of ACT as a treatment modality against solid tumors, discuss their advantages and limitations against solid tumor malignancies, discuss the promising therapies under active investigation, and examine future directions for this rapidly growing field.

Keywords: adoptive; chimeric antigen; immunotherapy; lymphocytes; receptors; tumor-infiltrating.

PubMed Disclaimer

Conflict of interest statement

Competing interests: KK: Owns stock in Seattle Genetics, Oncternal Therapeutics, and Veru. HE: None. DA-D: Member of the scientific advisory board of Anixa Biosciences. He receives research funding from Intellia Therapeutics and Bluebird Bio and has been listed as inventor or coinventor in patent applications filed by Moffitt Cancer Center. CHC: Honoraria from Sanofi and Exelixis for ad hoc Scientific Advisory Board participation.

Figures

Figure 1
Figure 1
Differences between chimeric antigen receptor (CAR) T cells and re-engineered T-cell receptors (TCRs). CAR T cells recognize antigens expressed on the cell surface via an antigen-recognition domain (signal-chain variable fragment). This domain is connected to a spacer, transmembrane domain, and a single or multiple costimulatory domains which then trigger downstream T-cell activation via a signaling domain. TCRs are heterodimers with an α and β subunit which recognizes intracellular peptide antigens presented to it by the major histocompatibility complex (MHC). The heterodimer is connected to a CD3 signal transduction complex which acts to activate downstream T-cell activation. Created with http://www.biorender.com/.
Figure 2
Figure 2
Challenges for adoptive cell therapy (ACT) in solid tumors. Tumor heterogeneity, antigen escape, T-cell trafficking, and an immunosuppressive tumor microenvironment represent some of the most challenging obstacles in solid tumor ACT development. Adapted from ‘Challenges for CAR T-cell immunotherapy in solid tumors’, by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates. IL-10, interleukin-10.

Similar articles

Cited by

References

    1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–64. 10.1038/nrc3239 - DOI - PMC - PubMed
    1. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–6. 10.1126/science.271.5256.1734 - DOI - PubMed
    1. Wolchok JD, Kluger H, Callahan MK, et al. . Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013;369:122–33. 10.1056/NEJMoa1302369 - DOI - PMC - PubMed
    1. Garon EB, Rizvi NA, Hui R, et al. . Pembrolizumab for the treatment of Non–Small-Cell lung cancer. New England Journal of Medicine 2015;372:2018–28. 10.1056/NEJMoa1501824 - DOI - PubMed
    1. Cohen EEW, Soulières D, Le Tourneau C, et al. . Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. The Lancet 2019;393:156–67. 10.1016/S0140-6736(18)31999-8 - DOI - PubMed

MeSH terms

Substances