Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 1:297:113257.
doi: 10.1016/j.jenvman.2021.113257. Epub 2021 Jul 23.

Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective

Affiliations
Review

Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective

Nirmal Renuka et al. J Environ Manage. .

Abstract

Algae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production. However, the optimum nutrient concentration and ratio may vary depending upon the microalgal species as well as cultivation conditions. The use of indigenous algae and algae-based consortia with other microorganisms has been proved promising in improving nutrient recovery efficiency and biomass production in pilot scale operations. However, environmental and cultivation conditions also play a significant role in determining the feasibility of the process. This review further focused on the assessment of the potential benefits of algal biomass production, renewable biofuel generation, and CO2 sequestration using wastewater in different countries on the basis of available data on wastewater generation and estimated nutrient contents. It was estimated that 5-10% replacement of fossil crude requirement with algal biofuels would require ~952-1903 billion m3 of water, 10-21 billion tons of nitrogen, and 2-4 billion tons of phosphorus fertilizers. In this context, coupling wastewater treatment and algal biomass production seem to be the most sustainable option with potential global benefits of polishing wastewater through nutrients recycling and carbon dioxide sequestration.

Keywords: Algae-based system; Biocrude; Biomass accumulation; Biorefinery; Municipal wastewater; Nutrient removal.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources