Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development
- PMID: 34310060
- PMCID: PMC10202149
- DOI: 10.1111/febs.16139
Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Keywords: embryogenesis; miRNAs; pattern formation; signaling systems.
© 2021 Federation of European Biochemical Societies.
Conflict of interest statement
Conflict of interest
The authors declare no conflict of interest.
Figures



Similar articles
-
MicroRNAs in early vertebrate development.Cell Cycle. 2009 Nov 1;8(21):3513-20. doi: 10.4161/cc.8.21.9847. Epub 2009 Nov 18. Cell Cycle. 2009. PMID: 19875943 Review.
-
Convergent microRNA actions coordinate neocortical development.Cell Mol Life Sci. 2014 Aug;71(16):2975-95. doi: 10.1007/s00018-014-1576-5. Epub 2014 Feb 12. Cell Mol Life Sci. 2014. PMID: 24519472 Free PMC article. Review.
-
A comparative analysis of heart microRNAs in vertebrates brings novel insights into the evolution of genetic regulatory networks.BMC Genomics. 2021 Mar 4;22(1):153. doi: 10.1186/s12864-021-07441-4. BMC Genomics. 2021. PMID: 33663371 Free PMC article.
-
The microRNA-17-92 family of microRNA clusters in development and disease.Cancer J. 2012 May-Jun;18(3):262-7. doi: 10.1097/PPO.0b013e318258b60a. Cancer J. 2012. PMID: 22647363 Free PMC article. Review.
-
MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review).Mol Med Rep. 2016 Jul;14(1):623-9. doi: 10.3892/mmr.2016.5335. Epub 2016 May 24. Mol Med Rep. 2016. PMID: 27222009 Free PMC article. Review.
Cited by
-
Time to go: neural crest cell epithelial-to-mesenchymal transition.Development. 2022 Aug 1;149(15):dev200712. doi: 10.1242/dev.200712. Epub 2022 Jul 29. Development. 2022. PMID: 35905012 Free PMC article. Review.
-
Central role of SUMOylation in the regulation of chromatin interactions and transcriptional outputs of the androgen receptor in prostate cancer cells.Nucleic Acids Res. 2024 Sep 9;52(16):9519-9535. doi: 10.1093/nar/gkae653. Nucleic Acids Res. 2024. PMID: 39106160 Free PMC article.
-
Widespread biochemical reaction networks enable Turing patterns without imposed feedback.Nat Commun. 2024 Sep 27;15(1):8380. doi: 10.1038/s41467-024-52591-0. Nat Commun. 2024. PMID: 39333132 Free PMC article.
References
-
- Alberti C, and Cochella L (2017). A framework for understanding the roles of miRNAs in animal development. Development 144, 2548–2559. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources