Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 5;125(30):6514-6528.
doi: 10.1021/acs.jpca.1c05431. Epub 2021 Jul 26.

Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage

Affiliations

Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage

Steve Scheiner. J Phys Chem A. .

Abstract

Accompanying the rapidly growing list of σ-hole bonds has come the acknowledgment of parallel sorts of noncovalent bonds which owe their stability in large part to a deficiency of electron density in the area above the molecular plane, known as a π-hole. The origins of these π-holes are probed for a wide series of molecules, comprising halogen, chalcogen, pnicogen, tetrel, aerogen, and spodium bonds. Much like in the case of their σ-hole counterparts, formation of the internal covalent π-bond in the Lewis acid molecule pulls density toward the bond midpoint and away from its extremities. This depletion of density above the central atom is amplified by an electron-withdrawing substituent. At the same time, the amplitude of the π*-orbital is enhanced in the region of the density-depleted π-hole, facilitating a better overlap with the nucleophile's lone pair orbital and a stabilizing n → π* charge transfer. The presence of lone pairs on the central atom acts to attenuate the π-hole and shift its position somewhat, resulting in an overall weakening of the π-hole bond. There is a tendency for π-hole bonds to include a higher fraction of induction energy than σ-bonds with proportionately smaller electrostatic and dispersion components, but this distinction is less a product of the σ- or π-character and more a function of the overall bond strength.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources