Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep;81(13):1467-1489.
doi: 10.1007/s40265-021-01555-5. Epub 2021 Jul 27.

Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies

Affiliations
Free article
Review

Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies

José M Valdivielso et al. Drugs. 2021 Sep.
Free article

Erratum in

Abstract

Despite recent therapeutic advances, chronic kidney disease (CKD) is one of the fastest growing global causes of death. This illustrates limitations of current therapeutic approaches and, potentially, unidentified knowledge gaps. For decades, renin-angiotensin-aldosterone system (RAAS) blockers have been the mainstay of therapy for CKD. However, they favor the development of hyperkalemia, which is already common in CKD patients due to the CKD-associated decrease in urinary potassium (K+) excretion and metabolic acidosis. Hyperkalemia may itself be life-threatening as it may trigger potentially lethal arrhythmia, and additionally may limit the prescription of RAAS blockers and lead to low-K+ diets associated to low dietary fiber intake. Indeed, hyperkalemia is associated with adverse kidney, cardiovascular, and survival outcomes. Recently, novel kidney protective therapies, ranging from sodium/glucose cotransporter 2 (SGLT2) inhibitors to new mineralocorticoid receptor antagonists have shown efficacy in clinical trials. Herein, we review K+ pathophysiology and the clinical impact and management of hyperkalemia considering these developments and the availability of the novel K+ binders patiromer and sodium zirconium cyclosilicate, recent results from clinical trials targeting metabolic acidosis (sodium bicarbonate, veverimer), and an increasing understanding of the role of the gut microbiota in health and disease.

PubMed Disclaimer

References

    1. Viera AJ, Wouk N. Potassium disorders: hypokalemia and hyperkalemia. Am Fam Physician. 2015;92(6):487–95.
    1. Cohn JN, Kowey PR, Whelton PK, et al. New guidelines for potassium replacement in clinical practice: a contemporary review by the National Council on Potassium in Clinical Practice. Arch Intern Med. 2000;160(16):2429–36.
    1. Ferreira JP, Butler J, Rossignol P, et al. Abnormalities of potassium in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(22):2836–50.
    1. Nilsson E, Gasparini A, Ärnlöv J, et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017;245:277–84.
    1. Institute of M. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: The National Academies Press; 2005.

MeSH terms