Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 27;21(1):710.
doi: 10.1186/s12879-021-06357-4.

COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection

Affiliations
Review

COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection

Kevin Escandón et al. BMC Infect Dis. .

Abstract

Scientists across disciplines, policymakers, and journalists have voiced frustration at the unprecedented polarization and misinformation around coronavirus disease 2019 (COVID-19) pandemic. Several false dichotomies have been used to polarize debates while oversimplifying complex issues. In this comprehensive narrative review, we deconstruct six common COVID-19 false dichotomies, address the evidence on these topics, identify insights relevant to effective pandemic responses, and highlight knowledge gaps and uncertainties. The topics of this review are: 1) Health and lives vs. economy and livelihoods, 2) Indefinite lockdown vs. unlimited reopening, 3) Symptomatic vs. asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 4) Droplet vs. aerosol transmission of SARS-CoV-2, 5) Masks for all vs. no masking, and 6) SARS-CoV-2 reinfection vs. no reinfection. We discuss the importance of multidisciplinary integration (health, social, and physical sciences), multilayered approaches to reducing risk ("Emmentaler cheese model"), harm reduction, smart masking, relaxation of interventions, and context-sensitive policymaking for COVID-19 response plans. We also address the challenges in understanding the broad clinical presentation of COVID-19, SARS-CoV-2 transmission, and SARS-CoV-2 reinfection. These key issues of science and public health policy have been presented as false dichotomies during the pandemic. However, they are hardly binary, simple, or uniform, and therefore should not be framed as polar extremes. We urge a nuanced understanding of the science and caution against black-or-white messaging, all-or-nothing guidance, and one-size-fits-all approaches. There is a need for meaningful public health communication and science-informed policies that recognize shades of gray, uncertainties, local context, and social determinants of health.

Keywords: Aerosol; Asymptomatic; COVID-19; Coronavirus; Droplet; Harm reduction; Mask; Nonpharmaceutical intervention; Outdoor; Pandemic; Pollution; Presymptomatic; Reinfection; SARS-CoV-2; Transmission.

PubMed Disclaimer

Conflict of interest statement

Dr. Kevin Escandón is a Senior Editorial Board Member for BMC Infectious Diseases and Dr. Jason Kindrachuk is an Editorial Board Member for the Viral Diseases section of BMC Infectious Diseases. These authors were not involved in any of the decisions regarding review of the manuscript or its acceptance. Three in-house Editors for the BMC Series and two anonymous expert reviewers assessed this manuscript. Dr. Isaac I. Bogoch has consulted for BlueDot, a social benefit corporation that tracks the emergence of infectious diseases, and for the National Hockey League Players’ Association. The other authors declare no conflicts of interest. The authors confirm that they have read BMC’s guidance on competing interests. Views expressed here are solely those of the authors and do not represent the position or policy of any institution or organization.

Figures

Fig. 1
Fig. 1
A false dichotomy is a logical fallacy that involves presenting two opposing facts, views, or options as though they were the only possibilities. The false dichotomy fallacy is often committed when someone thinks one of the two options is obviously true while the other is obviously false. In reality, many more facts, views, and options exist in between, which can be represented as a gradient of gray shades between the extremes of black and white. While reasoning in binaries may feel easier and reassuring, people unaware of false dichotomies distract from the fact that there are many alternatives
Fig. 2
Fig. 2
This infographic depicts the simplistic black-or-white framing and the scientific, political, and social polarization of the topics covered in this review: 1) Health and lives vs. economy and livelihoods, 2) Indefinite lockdown vs. unlimited reopening, 3) Symptomatic vs. asymptomatic SARS-CoV-2 infection, 4) Droplet vs. aerosol transmission of SARS-CoV-2, 5) Masks for all vs. no masking, and 6) SARS-CoV-2 reinfection vs. no reinfection
Fig. 3
Fig. 3
The “Swiss cheese model” of accident causation (more accurately called Emmental or Emmentaler cheese model [104]) originated with James T. Reason and Rob Lee in the 1990s (and was potentially influenced by other researchers) [105, 106, 107]. As applied to COVID-19 [34, 108, 109, 110, 111], this model recognizes the additive success of using multiple preventive interventions to reduce the risk of SARS-CoV-2 infection. No single slice of cheese (public health strategy) is perfect or sufficient at preventing the spread of SARS-CoV-2. Each slice has holes (inherent weaknesses or limitations) with variable number, size, and location over circumstances or time, which may allow viral transmission. SARS-CoV-2 infection occurs when multiple holes happen to align at the same time permitting a trajectory of successful transmission. When several interventions are used together and consistently and properly, the weaknesses in any one of them should be offset by the strengths of another. The preventive interventions can be broken into personal and shared, although some interventions may be both. The order of the slices and holes in the illustration are not reflective of the degree of effectiveness of the interventions, given that the scenarios of transmission are variable and complex. The black rats eating the slices of cheese represent factors undermining prevention efforts while the extra cheese represents a source of factors and opportunities favoring prevention efforts. This infographic was designed for this manuscript and was inspired by previous illustrations by the Cleveland Clinic [108], Sketchplanations [109], and virologist Ian M. Mackay, who proposed the Swiss Cheese Respiratory Pandemic Defense [34, 110]
Fig. 4
Fig. 4
There are two types of SARS-CoV-2-infected individuals: those that develop symptoms at some point (symptomatic in a broad sense, ~75%–84%) and those that never develop symptoms (asymptomatic, ~16%–25%). The former individuals undergo three stages of infection: presymptomatic (where viral RNA is detectable but there are no symptoms), symptomatic (in a strict sense), and postsymptomatic (symptoms are gone but viral RNA is still detectable). They are often referred to as presymptomatic, symptomatic, or postsymptomatic individuals. These stages have distinct implications for transmission. Since all SARS-CoV-2-infected individuals are initially symptomless, testing, follow-up, and a thorough symptom assessment are required to truly differentiate asymptomatic from presymptomatic, paucisymptomatic (individuals experiencing mild or few symptoms), and postsymptomatic infection

Similar articles

Cited by

References

    1. Johns Hopkins University. Coronavirus Resource Center. https://coronavirus.jhu.edu/. Accessed 1 July 2021.
    1. World Health Organization . Novel coronavirus (2019-nCoV). Situation report 13. 2020.
    1. Zarocostas J. How to fight an infodemic. Lancet. 2020;395(10225):676. doi: 10.1016/S0140-6736(20)30461-X. - DOI - PMC - PubMed
    1. Roozenbeek J, Schneider CR, Dryhurst S, Kerr J, Freeman ALJ, Recchia G, et al. Susceptibility to misinformation about COVID-19 around the world. R Soc Open Sci. 2020;7(10):201199. doi: 10.1098/rsos.201199. - DOI - PMC - PubMed
    1. van der Linden S, Roozenbeek J, Compton J. Inoculating against fake news about COVID-19. Front Psychol. 2020;11:566790. 10.3389/fpsyg.2020.566790. - PMC - PubMed