Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO
- PMID: 34326429
- PMCID: PMC8322093
- DOI: 10.1038/s41598-021-94951-6
Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO
Abstract
SARS-CoV-2 main protease is a common target for inhibition assays due to its high conservation among coronaviruses. Since flavonoids show antiviral activity, several in silico works have proposed them as potential SARS-CoV-2 main protease inhibitors. Nonetheless, there is reason to doubt certain results given the lack of consideration for flavonoid promiscuity or main protease plasticity, usage of short library sizes, absence of control molecules and/or the limitation of the methodology to a single target site. Here, we report a virtual screening study where dorsilurin E, euchrenone a11, sanggenol O and CHEMBL2171598 are proposed to inhibit main protease through different pathways. Remarkably, novel structural mechanisms were observed after sanggenol O and CHEMBL2171598 bound to experimentally proven allosteric sites. The former drastically affected the active site, while the latter triggered a hinge movement which has been previously reported for an inactive SARS-CoV main protease mutant. The use of a curated database of 4.8 k flavonoids, combining two well-known docking software (AutoDock Vina and AutoDock4.2), molecular dynamics and MMPBSA, guaranteed an adequate analysis and robust interpretation. These criteria can be considered for future screening campaigns against SARS-CoV-2 main protease.
© 2021. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures









References
-
- Walters WP, Stahl MT, Murcko MA. Virtual screening: An overview. Drug Discov. Today. 1998;3:160–178. doi: 10.1016/S1359-6446(97)01163-X. - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Miscellaneous