Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 13;16(5).
doi: 10.1088/1748-605X/ac199b.

Nanocellulose for peripheral nerve regeneration in rabbits using citric acid as crosslinker with chitosan and freeze/thawed PVA

Affiliations

Nanocellulose for peripheral nerve regeneration in rabbits using citric acid as crosslinker with chitosan and freeze/thawed PVA

Gabriel G de Lima et al. Biomed Mater. .

Abstract

This work investigates peripheral nerve regeneration using membranes consisting of pure chitosan (CHI), which was further blended with nanofibrillated cellulose, with citric acid as crosslinker, with posterior addition of polyvinyl alcohol, with subsequent freeze thawing. Nanocellulose improves the mechanical and thermal resistance, as well as flexibility of the film, which is ideal for the surgical procedure. The hydrogel presented a slow rate of swelling, which is adequate for cell and drug delivery. A series ofin vitrotests revealed to be non-toxic for neuronal Schwann cell from the peripheral nervous system of Rattus norvegicus, while there was a slight increase in toxicity if crosslink is performed-freeze-thaw. Thein vivoresults, using rabbits with a 5 mm gap nerve defect, revealed that even though pure CHI was able to regenerate the nerve, it did not present functional recovery with only the deep pain attribute being regenerated. When autologous implant was used jointly with the biomaterial membrane, as a covering agent, it revealed a functional recovery within 15 d when cellulose and the hydrogel were introduced, which was attributed to the film charge interaction that may help influence the neuronal axons growth into correct locations. Thus, indicating that this system presents ideal regeneration as nerve conduits.

Keywords: cryogels; nanocellulose; nerve conduits.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources