Application of computer-aided diagnosis for Lung-RADS categorization in CT screening for lung cancer: effect on inter-reader agreement
- PMID: 34331112
- DOI: 10.1007/s00330-021-08202-3
Application of computer-aided diagnosis for Lung-RADS categorization in CT screening for lung cancer: effect on inter-reader agreement
Abstract
Objectives: To evaluate the effects of computer-aided diagnosis (CAD) on inter-reader agreement in Lung Imaging Reporting and Data System (Lung-RADS) categorization.
Methods: Two hundred baseline CT scans covering all Lung-RADS categories were randomly selected from the National Lung Cancer Screening Trial. Five radiologists independently reviewed the CT scans and assigned Lung-RADS categories without CAD and with CAD. The CAD system presented up to five of the most risk-dominant nodules with measurements and predicted Lung-RADS category. Inter-reader agreement was analyzed using multirater Fleiss κ statistics.
Results: The five readers reported 139-151 negative screening results without CAD and 126-142 with CAD. With CAD, readers tended to upstage (average, 12.3%) rather than downstage Lung-RADS category (average, 4.4%). Inter-reader agreement of five readers for Lung-RADS categorization was moderate (Fleiss kappa, 0.60 [95% confidence interval, 0.57, 0.63]) without CAD, and slightly improved to substantial (Fleiss kappa, 0.65 [95% CI, 0.63, 0.68]) with CAD. The major cause for disagreement was assignment of different risk-dominant nodules in the reading sessions without and with CAD (54.2% [201/371] vs. 63.6% [232/365]). The proportion of disagreement in nodule size measurement was reduced from 5.1% (102/2000) to 3.1% (62/2000) with the use of CAD (p < 0.001). In 31 cancer-positive cases, substantial management discrepancies (category 1/2 vs. 4A/B) between reader pairs decreased with application of CAD (pooled sensitivity, 85.2% vs. 91.6%; p = 0.004).
Conclusions: Application of CAD demonstrated a minor improvement in inter-reader agreement of Lung-RADS category, while showing the potential to reduce measurement variability and substantial management change in cancer-positive cases.
Key points: • Inter-reader agreement of five readers for Lung-RADS categorization was minimally improved by application of CAD, with a Fleiss kappa value of 0.60 to 0.65. • The major cause for disagreement was assignment of different risk-dominant nodules in the reading sessions without and with CAD (54.2% vs. 63.6%). • In 31 cancer-positive cases, substantial management discrepancies between reader pairs, referring to a difference in follow-up interval of at least 9 months (category 1/2 vs. 4A/B), were reduced in half by application of CAD (32/310 to 16/310) (pooled sensitivity, 85.2% vs. 91.6%; p = 0.004).
Keywords: Computer-assisted; Diagnostic screening program; Lung neoplasms; Observer variation; Tomography, X-ray computed.
© 2021. European Society of Radiology.
References
-
- National Lung Screening Trial Research Team, Aberle DR, Adams AM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409
-
- de Koning HJ, van der Aalst CM, de Jong PA et al (2020) Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med 382:503–513
-
- Pastorino U, Silva M, Sestini S et al (2019) Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. Ann Oncol 30:1162–1169 - DOI
-
- American College of Radiology (2014) Lung CT screening reporting and data system (Lung-RADS). Available via https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads
-
- Henschke CI, Yip R, Yankelevitz DF, Smith JP, International Early Lung Cancer Action Program Investigators (2013) Definition of a positive test result in computed tomography screening for lung cancer: a cohort study. Ann Intern Med 158:246–252
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous