Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 15:134:791-803.
doi: 10.1016/j.actbio.2021.07.061. Epub 2021 Jul 28.

Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti-24Nb-38Zr-2Mo alloy for orthopedic applications

Affiliations

Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti-24Nb-38Zr-2Mo alloy for orthopedic applications

Xian Tong et al. Acta Biomater. .

Abstract

β-type titanium (Ti) alloys have been extensively investigated as orthopedic implant materials due to their unique combination of low elastic modulus, high specific strength, corrosion resistance, and biocompatibility. In this study the mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of β-type Ti-24Nb-38Zr-2Mo (TNZM) and Ti-24Nb-38Zr-2Mo-0.1Sc (TNZMS) have been comparatively investigated for orthopedic applications. Cold-rolling (CR) and cold-rolling plus solution-treatment (CR+ST) were performed on the as-cast (AC) alloys and their microstructures and material properties were characterized. The impact of Sc addition on the mechanical and corrosion properties, friction and wear behavior, and in vitro cytocompatibility of the TNZMS alloy was assessed. The CR+ST TNZMS alloy exhibited the best combination of properties among all the alloy samples, with a yield strength of 780 MPa, ultimate strength of 809 MPa, elongation of 19%, Young's modulus of 65.4 GPa, and hardness of 265 HV. Electrochemical testing in Hanks' Solution indicated that the CR+ST TNZMS sample also showed the highest corrosion resistance with a corrosion potential of -0.234 V, corrosion current density of 0.07 µA/cm2, and corrosion rate of 1.2 µm/y. Friction and wear testing revealed that the TNZMS alloy showed higher wear resistance compared to the TNZM alloy and the wear resistance of the different samples was ranked CR > CR+ST > AC. Finally, both the CR+ST TNZM and TNZMS showed no-cytotoxicity towards MG-63 cells and the TNZMS exhibited slightly higher cytocompatibility than the TNZM alloy. STATEMENT OF SIGNIFICANCE: This work reports the β-type Ti-24Nb-38Zr-2Mo (TNZM) and Ti-24Nb-38Zr-2Mo-0.1Sc (TNZMS) alloys fabricated by as-cast (AC), cold-rolling (CR), and cold-rolling plus solution-treatment (CR+ST) for potential orthopedic applications. The experimental results showed that the TNZMS alloy exhibited significantly enhanced mechanical, wear, and corrosion properties than those of TNZM alloy; and the CR+ST TNZMS possess a unique combination of the best mechanical and corrosion properties including a yield strength of 780 MPa, ultimate strength of 809 MPa, elongation of 19%, Young's modulus of 65.4 GPa, and corrosion rate of 1.2 µm/y in Hanks' Solution. Both the CR+ST TNZM and TNZMS alloys exhibited non-cytotoxicity towards MG-63 cells and TNZMS showed a higher cytocompatibility than that of TNZM.

Keywords: Corrosion properties; Cytocompatibility; Friction and wear resistance; Mechanical properties; Scandium; Ti–Nb–Zr–Mo alloy.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources