Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2021 Jul 31;14(1):197.
doi: 10.1186/s12920-021-01045-3.

Re-analysis of whole-exome sequencing data reveals a novel splicing variant in the SLC2A1 in a patient with GLUT1 Deficiency Syndrome 1 accompanied by hemangioma: a case report

Affiliations
Case Reports

Re-analysis of whole-exome sequencing data reveals a novel splicing variant in the SLC2A1 in a patient with GLUT1 Deficiency Syndrome 1 accompanied by hemangioma: a case report

Tugce Bozkurt et al. BMC Med Genomics. .

Abstract

Background: GLUT1 Deficiency Syndrome 1 (GLUT1DS1) is a neurological disorder caused by either heterozygous or homozygous mutations in the Solute Carrier Family 2, Member 1 (SLC2A1) gene. SLC2A1 encodes Glucose transporter type 1 (GLUT1) protein, which is the primary glucose transporter at the blood-brain barrier. A ketogenic diet (KD) provides an alternative fuel for brain metabolism to treat impaired glucose transport. By reanalyzing exome data, we identified a de novo heterozygous SLC2A1 variant in a girl with epilepsy. After reversed phenotyping with neurometabolic tests, she was diagnosed with GLUT1DS1 and started on a KD. The patient's symptoms responded to the diet. Here, we report a patient with GLUT1DS1 with a novel SLC2A1 mutation. She also has a hemangioma which has not been reported in association with this syndrome before.

Case presentation: A 5-year 8-month girl with global developmental delay, spasticity, intellectual disability, dysarthric speech, abnormal eye movements, and hemangioma. The electroencephalography (EEG) result revealed that she had epilepsy. Magnetic resonance imaging (MRI) showed that non-specific white matter abnormalities. Whole Exome Sequencing (WES) was previously performed, but the case remained unsolved. The re-analysis of WES data revealed a heterozygous splicing variant in the SLC2A1 gene. Segregation analysis with parental DNA samples indicated that the variant occurred de novo. Lumbar puncture (LP) confirmed the diagnosis, and the patient started on a KD. Her seizures responded to the KD. She has been seizure-free since shortly after the initiation of the diet. She also had decreased involuntary movements, her speech became more understandable, and her vocabulary increased after the diet.

Conclusions: We identified a novel de novo variant in the SLC2A1 gene in a patient who previously had a negative WES result. The patient has been diagnosed with GLUT1DS1. The syndrome is a treatable condition, but the differential diagnosis is not an easy process due to showing a wide range of phenotypic spectrum and the overlapping symptoms with other neurological diseases. The diagnosis necessitates a genomic testing approach. Our findings also highlight the importance of re-analysis to undiagnosed cases after initial WES to reveal disease-causing variants.

Keywords: GLUT1 Deficiency Syndrome 1; Hemangioma; Ketogenic diet; SLC2A1; Whole exome sequencing.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Bioinformatics workflow
Fig. 2
Fig. 2
Schematic representation of SLC2A1 mRNA transcript (NM_6516.4) and IGV visualization of the variant. a SLC2A1 gene has 10 exons that encode GLUT1 composed of 492 amino acids. b The patient has variant c.275 + 1 in the heterozygous state. There are 128 reads for reference base c and 115 deletions at the position of 43,396,716 in the IGV visualization
Fig. 3
Fig. 3
Forward and reverse reads obtained from Sanger Sequencing of the patient and her biological parents

Similar articles

Cited by

References

    1. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: Clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57:111–118. doi: 10.1002/ana.20331. - DOI - PubMed
    1. Baldwin SA. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1993;1154:17–49. - PubMed
    1. Gerhart DZ, Levasseur RJ, Broderius MA, Drewes LR. Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res. 1989;22:464–472. doi: 10.1002/jnr.490220413. - DOI - PubMed
    1. Harik SI, Kalaria N, Andersson L, Lundahl P. lmmunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J Neurosci. 1990;10:3862–3872. doi: 10.1523/JNEUROSCI.10-12-03862.1990. - DOI - PMC - PubMed
    1. Pardridges M, Boado J, Farrell R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. J Biol. 1990;265:18035–18040. - PubMed

Publication types

Substances

Supplementary concepts