The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo
- PMID: 34333860
- DOI: 10.1111/pcmr.13006
The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo
Abstract
Vitiligo is an autoimmune skin disease, characterized by depigmentation and epidermal melanocytes loss. The specific mechanisms underlying vitiligo have not been fully understood. As a result, treating vitiligo is a dermatological challenge. Recently, much attention has been paid to the dysfunction and interaction of organelles under environmental stress. The impaired organelles could generate misfolded proteins, particularly accumulated toxic premelanosome protein (PMEL) amyloid oligomers, activating the autoimmune system and cause melanocyte damage. Unfolded protein response (UPR) dysfunction accelerates toxic PMEL accumulation. Herein, we presented a narrative review on UPR's role in vitiligo, the misfolded PMEL-induced attack of the autoimmune system under autophagy dysfunction caused by abnormal activation of transient receptor potential (TRP) channels and the background of UPR system defects in melanocytes. All of these mechanisms were integrated to form UPR/PMEL-TRP channels/autophagy axis, providing a new understanding of vitiligo pathogenesis.
Keywords: autophagy; melanocyte; premelanosome protein; transient receptor potential channels; unfolded protein response; vitiligo.
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Similar articles
-
Autoimmune etiology of generalized vitiligo.Curr Dir Autoimmun. 2008;10:227-43. doi: 10.1159/000131485. Curr Dir Autoimmun. 2008. PMID: 18460889 Review.
-
Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?J Dermatol Sci. 2016 Jan;81(1):3-9. doi: 10.1016/j.jdermsci.2015.09.003. Epub 2015 Sep 8. J Dermatol Sci. 2016. PMID: 26387449 Review.
-
Possible mechanisms of hypopigmentation in lichen sclerosus.Am J Dermatopathol. 2002 Apr;24(2):97-107. doi: 10.1097/00000372-200204000-00001. Am J Dermatopathol. 2002. PMID: 11979069
-
Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress.Pigment Cell Melanoma Res. 2014 Mar;27(2):209-20. doi: 10.1111/pcmr.12208. Epub 2014 Jan 13. Pigment Cell Melanoma Res. 2014. PMID: 24354861 Free PMC article.
-
ABCB6 Resides in Melanosomes and Regulates Early Steps of Melanogenesis Required for PMEL Amyloid Matrix Formation.J Mol Biol. 2018 Oct 12;430(20):3802-3818. doi: 10.1016/j.jmb.2018.06.033. Epub 2018 Jun 22. J Mol Biol. 2018. PMID: 29940187
Cited by
-
NLRP3 autophagic degradation disruption in melanocytes contributes to vitiligo development.Cell Death Differ. 2025 Sep 11. doi: 10.1038/s41418-025-01578-5. Online ahead of print. Cell Death Differ. 2025. PMID: 40935835
-
Hair Follicle Melanocytes Initiate Autoimmunity in Alopecia Areata: a Trigger Point.Clin Rev Allergy Immunol. 2022 Dec;63(3):417-430. doi: 10.1007/s12016-022-08954-w. Epub 2022 Sep 19. Clin Rev Allergy Immunol. 2022. PMID: 36121544 Review.
-
Differential Expression of Serum Exosomal Hsa-miR-487b-3p in Progressive Vitiligo Before and After Systemic Corticosteroid Treatment.Clin Cosmet Investig Dermatol. 2022 Jul 18;15:1377-1386. doi: 10.2147/CCID.S372112. eCollection 2022. Clin Cosmet Investig Dermatol. 2022. PMID: 35880009 Free PMC article.
-
The role of MiT/TFE family members in autophagy regulation.Curr Top Biochem Res. 2021;22:151-159. Curr Top Biochem Res. 2021. PMID: 35663368 Free PMC article.
-
Targets Exploration of Hydroxychloroquine for Pigmentation and Cell Protection Effect in Melanocytes: The Clue for Vitiligo Treatment.Drug Des Devel Ther. 2022 Apr 5;16:1011-1024. doi: 10.2147/DDDT.S350387. eCollection 2022. Drug Des Devel Ther. 2022. PMID: 35411132 Free PMC article.
References
REFERENCES
-
- Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., … Samali, A. (2019). Endoplasmic reticulum stress signalling-from basic mechanisms to clinical applications. The FEBS Journal, 286, 241-278.
-
- Alikhan, A., Felsten, L. M., Daly, M., & Petronic-Rosic, V. (2011). Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. Journal of the American Academy of Dermatology, 65, 473-491.
-
- Al-Shobaili, H. A., & Rasheed, Z. (2014). Mitochondrial DNA acquires immunogenicity on exposure to nitrosative stress in patients with vitiligo. Human Immunology, 75, 1053-1061.
-
- Arowojolu, O. A., Orlow, S. J., Elbuluk, N., & Manga, P. (2017). The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone. Experimental Dermatology, 26, 637-644.
-
- Bae, J. M., Chung, K. Y., Yun, S. J., Kim, H., Park, B. C., Kim, J. S., … Kim, M. (2019). Markedly reduced risk of internal malignancies in patients with vitiligo: A nationwide population-based cohort study. Journal of Clinical Oncology, 37, 903-911.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials