Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Aug 4;21(1):753.
doi: 10.1186/s12879-021-06435-7.

Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis

Gabriel Kambale Bunduki et al. BMC Infect Dis. .

Abstract

Background: Uropathogenic Escherichia coli (UPEC) are amongst the most frequent causes of urinary tract infections. We report a systematic review and meta-analysis of virulence factors and antimicrobial resistance of UPEC isolated from urinary tract infections.

Methods: A systematic review and meta-analysis were performed using PRISMA guidelines (Research Registry ref. 5874). Data were extracted from PubMed/MEDLINE and ScienceDirect databases for studies published from January 1, 2000 to December 31, 2019. Studies reporting antimicrobial resistance and virulence factors of UPEC isolated in confirmed urinary tract infections (≥105CFU/ml) were eligible. Prevalence of antimicrobial resistance and virulence factors of UPEC were estimated using random-effects meta-analysis model. Estimates with 95% confidence intervals, I-square (I2) statistic, and Cochran's Q test were computed using the score statistic and the exact binomial method by incorporating the Freeman-Tukey double arcsine transformation of proportions.

Results: Our search returned 2504 hits, of which 13 studies were included in the meta-analysis, totalling 1888 UPEC isolates. Highest antimicrobial resistance rates were observed among the antibiotic class of tetracycline in 69.1% (498/721), followed by sulphonamides in 59.3% (1119/1888), quinolones in 49.4% (1956/3956), and beta-lactams in 36.9% (4410/11964). Among beta-lactams, high resistance was observed in aminopenicillins in 74.3% (1157/1557) and first generation cephalosporins in 38.8% (370/953). Meanwhile, virulence factors with highest prevalence were immune suppressors (54.1%) followed by adhesins (45.9%). Taken individually, the most observed virulence genes were shiA (92.1%), CSH (80.0%), fimH/MSHA (75.3%), traT (75.1%), sisA (72.2%), iucD (65.7%), iutA (61.8%), kpsMTII (60.6%), and PAI (55.2%).

Conclusions: The increased antibiotic resistance of UPEC isolates was demonstrated and suggested a need for reassessment of empirical therapies in urinary tract infections treatment caused by this pathogen. In addition, this pathotype exhibited diverse surface and secreted virulence factors.

Keywords: Antimicrobial resistance; Escherichia coli; Meta-analysis; Systematic review; Urinary tract infection; Virulence factors.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The PRISMA flowchart for literature search and study selection
Fig. 2
Fig. 2
Forest plot of UPEC resistance to different antibiotic subgroups (A main antibiotic groups, B Beta-lactams classes, C Cephalosporins classes) and virulence factors groups (D)

References

    1. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections : virulence factors, bladder responses, antibiotic and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566. doi: 10.3389/fmicb.2017.01566. - DOI - PMC - PubMed
    1. Raeispour M, Ranjbar R. Antibiotic resistance , virulence factors and genotyping of Uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control. 2018;7(1):118. doi: 10.1186/s13756-018-0411-4. - DOI - PMC - PubMed
    1. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012:681473. 10.1155/2012/687473. - PMC - PubMed
    1. Calhau V, Domingues S, Mendonc N, Jorge G, Silva D, Jorge G, et al. Interplay between pathogenicity island carriage, resistance profile and plasmid acquisition in uropathogenic Escherichia coli. J Med Microbiol. 2015;64(8):828–835. doi: 10.1099/jmm.0.000104. - DOI - PubMed
    1. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–e00017. doi: 10.1128/CMR.00088-17. - DOI - PMC - PubMed

MeSH terms