Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 7;12(27):9359-9365.
doi: 10.1039/d1sc02503a. eCollection 2021 Jul 14.

Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins

Affiliations

Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins

Tao Zhong et al. Chem Sci. .

Abstract

The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. The applications and synthetic methods of β-amino sulfonyl fluorides.
Scheme 1
Scheme 1. Scope of N-(hetero)aryl amides. Reaction conditions as stated in Table 1, entry 1.
Scheme 2
Scheme 2. Scope of terminal and nonterminal olefins. Reaction conditions as stated in Table 1, entry 1. Diastereomeric ratios were determined by NMR analysis of the crude reaction mixtures.
Scheme 3
Scheme 3. Scope of carbamates, ureas, pharmaceuticals and natural products. Reaction conditions as stated in Table 1, entry 1. Diastereomeric ratios were determined by NMR analysis of the crude reaction mixtures.
Scheme 4
Scheme 4. SuFEx reactions of 2a. Reaction conditions: (a) MeONa, MeOH, rt, 15 min. (b) NH3·H2O, pyridine, MeCN, 60 °C, 4 h. (c) Morpholine, Et3N, MeCN, 80 °C, 24 h. (d) Phenol, Cs2CO3, MeCN, rt, 12 h. (e) TMSN3, DMAP, MeCN, 50 °C, 6 h. (f) Phenylacetylene, CuTC, toluene, rt, 24 h. (g) TMS-protected diacetonefructose, DBU, MeCN, 3 h. (h) TBS-protected mecarbinate, TBAF, MeCN, 2 h.
Scheme 5
Scheme 5. Cross-coupling and reduction reactions of SFs.
Scheme 6
Scheme 6. Mechanistic studies.
Scheme 7
Scheme 7. Proposed mechanism.

References

    1. Dong J. Krasnova L. Finn M. G. Sharpless K. B. Angew. Chem., Int. Ed. 2014;53:9430. - PubMed
    1. For recent examples, see:

    2. Yin J. Zarkowsky D. S. Thomas D. W. Zhao M. M. Huffman M. A. Org. Lett. 2004;6:1465. - PubMed
    3. Nielsen M. K. Ugaz C. R. Li W. Doyle A. G. J. Am. Chem. Soc. 2015;137:9571. - PubMed
    4. Mukherjee P. Woroch C. P. Cleary L. Rusznak M. Franzese R. W. Reese M. R. Tucker J. W. Humphrey J. M. Etuk S. M. Kwan S. C. Am Ende C. W. Ball N. D. Org. Lett. 2018;20:3943. - PMC - PubMed
    5. Nielsen M. K. Ahneman D. T. Riera O. Doyle A. G. J. Am. Chem. Soc. 2018;140:5004. - PubMed
    1. For recent examples, see:

    2. Dong J. Sharpless K. B. Kwisnek L. Oakdale J. S. Fokin V. V. Angew. Chem., Int. Ed. 2014;53:9466. - PMC - PubMed
    3. Wang H. Zhou F. Ren G. Zheng Q. Chen H. Gao B. Klivansky L. Liu Y. Wu B. Xu Q. Lu J. Sharpless K. B. Wu P. Angew. Chem., Int. Ed. 2017;56:11203. - PMC - PubMed
    4. Gao B. Zhang L. Zheng Q. Zhou F. Klivansky L. M. Lu J. Liu Y. Dong J. Wu P. Sharpless K. B. Nat. Chem. 2017;9:1083. - PMC - PubMed
    5. Yang C. Flynn J. P. Niu J. Angew. Chem., Int. Ed. 2018;57:16194. - PubMed
    1. For recent examples, see:

    2. Narayanan A. Jones L. H. Chem. Sci. 2015;6:2650. - PMC - PubMed
    3. Jones L. H. ACS Med. Chem. Lett. 2018;9:584. - PMC - PubMed
    4. Brouwer A. J. Jonker A. Werkhoven P. Kuo E. Li N. Gallastegui N. Kemmink J. Florea B. I. Groll M. Overkleeft H. S. Liskamp R. M. J. J. Med. Chem. 2012;55:10995. - PubMed
    5. Brouwer A. J. Ceylan T. Jonker A. M. van der Linden T. Liskamp R. M. Bioorg. Med. Chem. 2011;19:2397. - PubMed
    6. Guardiola S. Prades R. Mendieta L. Brouwer A. J. Streefkerk J. Nevola L. Tarragó T. Liskamp R. M. J. Giralt E. Cell Chem. Biol. 2018;25:1031. - PubMed
    7. Artschwager R. Ward D. J. Gannon S. Brouwer A. J. van de Langemheen H. Kowalski H. Liskamp R. M. J. J. Med. Chem. 2018;61:5395. - PubMed
    8. Dubiella C. Cui H. Gersch M. Brouwer A. J. Sieber S. A. Krüger A. Liskamp R. M. J. Groll M. Angew. Chem., Int. Ed. 2014;53:11969. - PubMed
    1. For selected reviews, see:

    2. Zhong T. Chen Z. Yi J. Lu G. Weng J. Chin. Chem. Lett. 2021 doi: 10.1016/j.cclet.2021.03.035. - DOI
    3. Meng Y.-P. Wang S.-M. Fang W.-Y. Xie Z.-Z. Leng J. Alsulami H. Qin H.-L. Synthesis. 2019;52:673.
    4. Barrow A. S. Smedley C. J. Zheng Q. Li S. Dong J. Moses J. E. Chem. Soc. Rev. 2019;48:4731. - PubMed
    5. Chinthakindi P. K. Arvidsson P. I. Eur. J. Org. Chem. 2018;2018:3648.
    6. Abdul Fattah T. Saeed A. Albericio F. J. Fluorine Chem. 2018;213:87.