Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins
- PMID: 34349907
- PMCID: PMC8278970
- DOI: 10.1039/d1sc02503a
Photoredox-catalyzed aminofluorosulfonylation of unactivated olefins
Abstract
The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures








References
-
- Dong J. Krasnova L. Finn M. G. Sharpless K. B. Angew. Chem., Int. Ed. 2014;53:9430. - PubMed
-
-
For recent examples, see:
- Yin J. Zarkowsky D. S. Thomas D. W. Zhao M. M. Huffman M. A. Org. Lett. 2004;6:1465. - PubMed
- Nielsen M. K. Ugaz C. R. Li W. Doyle A. G. J. Am. Chem. Soc. 2015;137:9571. - PubMed
- Mukherjee P. Woroch C. P. Cleary L. Rusznak M. Franzese R. W. Reese M. R. Tucker J. W. Humphrey J. M. Etuk S. M. Kwan S. C. Am Ende C. W. Ball N. D. Org. Lett. 2018;20:3943. - PMC - PubMed
- Nielsen M. K. Ahneman D. T. Riera O. Doyle A. G. J. Am. Chem. Soc. 2018;140:5004. - PubMed
-
-
-
For recent examples, see:
- Dong J. Sharpless K. B. Kwisnek L. Oakdale J. S. Fokin V. V. Angew. Chem., Int. Ed. 2014;53:9466. - PMC - PubMed
- Wang H. Zhou F. Ren G. Zheng Q. Chen H. Gao B. Klivansky L. Liu Y. Wu B. Xu Q. Lu J. Sharpless K. B. Wu P. Angew. Chem., Int. Ed. 2017;56:11203. - PMC - PubMed
- Gao B. Zhang L. Zheng Q. Zhou F. Klivansky L. M. Lu J. Liu Y. Dong J. Wu P. Sharpless K. B. Nat. Chem. 2017;9:1083. - PMC - PubMed
- Yang C. Flynn J. P. Niu J. Angew. Chem., Int. Ed. 2018;57:16194. - PubMed
-
-
-
For recent examples, see:
- Narayanan A. Jones L. H. Chem. Sci. 2015;6:2650. - PMC - PubMed
- Jones L. H. ACS Med. Chem. Lett. 2018;9:584. - PMC - PubMed
- Brouwer A. J. Jonker A. Werkhoven P. Kuo E. Li N. Gallastegui N. Kemmink J. Florea B. I. Groll M. Overkleeft H. S. Liskamp R. M. J. J. Med. Chem. 2012;55:10995. - PubMed
- Brouwer A. J. Ceylan T. Jonker A. M. van der Linden T. Liskamp R. M. Bioorg. Med. Chem. 2011;19:2397. - PubMed
- Guardiola S. Prades R. Mendieta L. Brouwer A. J. Streefkerk J. Nevola L. Tarragó T. Liskamp R. M. J. Giralt E. Cell Chem. Biol. 2018;25:1031. - PubMed
- Artschwager R. Ward D. J. Gannon S. Brouwer A. J. van de Langemheen H. Kowalski H. Liskamp R. M. J. J. Med. Chem. 2018;61:5395. - PubMed
- Dubiella C. Cui H. Gersch M. Brouwer A. J. Sieber S. A. Krüger A. Liskamp R. M. J. Groll M. Angew. Chem., Int. Ed. 2014;53:11969. - PubMed
-
-
-
For selected reviews, see:
- Zhong T. Chen Z. Yi J. Lu G. Weng J. Chin. Chem. Lett. 2021 doi: 10.1016/j.cclet.2021.03.035. - DOI
- Meng Y.-P. Wang S.-M. Fang W.-Y. Xie Z.-Z. Leng J. Alsulami H. Qin H.-L. Synthesis. 2019;52:673.
- Barrow A. S. Smedley C. J. Zheng Q. Li S. Dong J. Moses J. E. Chem. Soc. Rev. 2019;48:4731. - PubMed
- Chinthakindi P. K. Arvidsson P. I. Eur. J. Org. Chem. 2018;2018:3648.
- Abdul Fattah T. Saeed A. Albericio F. J. Fluorine Chem. 2018;213:87.
-
LinkOut - more resources
Full Text Sources
Other Literature Sources