Pseudoreplication in genomic-scale data sets
- PMID: 34351073
- PMCID: PMC9415146
- DOI: 10.1111/1755-0998.13482
Pseudoreplication in genomic-scale data sets
Abstract
In genomic-scale data sets, loci are closely packed within chromosomes and hence provide correlated information. Averaging across loci as if they were independent creates pseudoreplication, which reduces the effective degrees of freedom (df') compared to the nominal degrees of freedom, df. This issue has been known for some time, but consequences have not been systematically quantified across the entire genome. Here, we measured pseudoreplication (quantified by the ratio df'/df) for a common metric of genetic differentiation (FST ) and a common measure of linkage disequilibrium between pairs of loci (r2 ). Based on data simulated using models (SLiM and msprime) that allow efficient forward-in-time and coalescent simulations while precisely controlling population pedigrees, we estimated df' and df'/df by measuring the rate of decline in the variance of mean FST and mean r2 as more loci were used. For both indices, df' increases with Ne and genome size, as expected. However, even for large Ne and large genomes, df' for mean r2 plateaus after a few thousand loci, and a variance components analysis indicates that the limiting factor is uncertainty associated with sampling individuals rather than genes. Pseudoreplication is less extreme for FST , but df'/df ≤0.01 can occur in data sets using tens of thousands of loci. Commonly-used block-jackknife methods consistently overestimated var (FST ), producing very conservative confidence intervals. Predicting df' based on our modelling results as a function of Ne , L, S, and genome size provides a robust way to quantify precision associated with genomic-scale data sets.
Keywords: FST; Ne; degrees of freedom; genome size; jackknife variance; linkage disequilibrium; simulations.
© 2021 John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Figures









References
-
- Aarts E, Verhage M, Veenvliet JV, Dolan CV and Van Der Sluis S, 2014. A solution to dependency: using multilevel analysis to accommodate nested data. Nature Neuroscience, 17, 491. - PubMed
-
- Aguirre NC, Filippi CV, Zaina G, Rivas JG, Acuña CV, Villalba PV, García MN, González S, Rivarola M, Martínez MC and Puebla AF, 2019. Optimizing ddRADseq in non-model species: A case study in Eucalyptus dunnii Maiden. Agronomy, 9(9), p.484.
-
- Beverton RJH; Holt SJ (1957), On the Dynamics of Exploited Fish Populations, Fishery Investigations Series II Volume XIX, Ministry of Agriculture, Fisheries and Food.
MeSH terms
Grants and funding
LinkOut - more resources
Research Materials