Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct 15:710:109002.
doi: 10.1016/j.abb.2021.109002. Epub 2021 Aug 2.

The role and therapeutic potential of MSC-derived exosomes in osteoarthritis

Affiliations
Review

The role and therapeutic potential of MSC-derived exosomes in osteoarthritis

Chuncha Bao et al. Arch Biochem Biophys. .

Abstract

Osteoarthritis (OA) is the most common painful disease with chronic articular cartilage degeneration. The pathological process of OA is complex and characterized by the imbalance between the synthesis and catabolism of chondrocytes and extracellular matrix, leading to the progressive destruction of articular cartilage damage. Because of the self-renewal and differentiation of mesenchymal stem cells (MSCs), various exogenous MSC-based cell therapies have been developed to treat OA. Moreover, the efficacy of MSC- based therapy is mainly attributed to the paracrine of cytokines, growth factors, and exosomes. Exosomes derived from MSCs can deliver various DNAs, RNAs, proteins and lipids, thus promoting MSCs migration and cartilage repair. Therefore, MSC-derived exosomes are considered as a promising alternative therapy for OA. In this review, we summarized properties of MSC-derived exosomes and the new role of MSC-derived exosomes in the treatment of OA. We also proposed possible perspectives of MSC-derived exosomes as cell-free regenerative reagents in the treatment of OA.

Keywords: Exosomes; MSC-derived exosomes; Mesenchymal stem cells; Osteoarthritis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources