Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 24:414:113511.
doi: 10.1016/j.bbr.2021.113511. Epub 2021 Aug 3.

Specific stimulation of PV+ neurons at early stage ameliorates prefrontal ischemia-induced spatial working memory impairment

Affiliations

Specific stimulation of PV+ neurons at early stage ameliorates prefrontal ischemia-induced spatial working memory impairment

Lin Chen et al. Behav Brain Res. .

Abstract

Prefrontal ischemia can cause impairments in learning and memory, executive functions and cognitive flexibility. However, the related cellular mechanisms at the early stage are still elusive. The present study used ischemic stroke in medial prefrontal cortex and systemically investigated the electrophysiological changes of the parvalbumin (PV+) interneurons 12 h post ischemia. We found that Ih and the related voltage sags in PV+ interneurons are downregulated post ischemia, which correlates with hyperpolarization of the membrane potentials and increased input resistance in these interneurons. Consistent with the suppression of Ih, postischemic PV+ interneurons exhibited a reduction in excitability and exerted a less inhibitory control over the neighboring pyramidal excitatory neurons. Moreover, we found that specifically chemogenetic activation of PV+ neurons at early stage ameliorated prefrontal ischemia-induced spatial working memory dysfunction in T-maze without effects on the locomotor coordination and balance. In contrast, suppression of PV+ neurons by blockade of Ih leaded to further aggravate the damage of spatial memory. These findings indicate that dysfunctional Ih in the PV+ neuron postischemia induces the imbalance of excitation and inhibition, which might represent a novel mechanism underlying the prefrontal ischemia-induced cognitive impairment.

Keywords: HCN channels; I(h); PV(+) neuron; Prefrontal ischemia.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources