Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 1;17(1):67-77.
doi: 10.1123/ijspp.2020-0940. Epub 2021 Aug 5.

Fatigue Measured in Dynamic Versus Isometric Modes After Trail Running Races of Various Distances

Fatigue Measured in Dynamic Versus Isometric Modes After Trail Running Races of Various Distances

Jerome Koral et al. Int J Sports Physiol Perform. .

Abstract

Purpose: Fatigue has previously been investigated in trail running by comparing maximal isometric force before and after the race. Isometric contractions may not entirely reflect fatigue-induced changes, and therefore dynamic evaluation is warranted. The aim of the present study was to compare the magnitude of the decrement of maximal isometric force versus maximal power, force, and velocity after trail running races ranging from 40 to 170 km.

Methods: Nineteen trail runners completed races shorter than 60 km, and 21 runners completed races longer than 100 km. Isometric maximal voluntary contractions (IMVCs) of knee extensors and plantar flexors and maximal 7-second sprints on a cycle ergometer were performed before and after the event.

Results: Maximal power output (Pmax; -14% [11%], P < .001), theoretical maximum force (F0; -11% [14%], P < .001), and theoretical maximum velocity (-3% [8%], P = .037) decreased significantly after both races. All dynamic parameters but theoretical maximum velocity decreased more after races longer than 100 km than races shorter than 60 km (P < .05). Although the changes in IMVCs were significantly correlated (P < .05) with the changes in F0 and Pmax, reductions in IMVCs for knee extensors (-29% [16%], P < .001) and plantar flexors (-26% [13%], P < .001) were larger (P < .001) than the reduction in Pmax and F0.

Conclusions: After a trail running race, reductions in isometric versus dynamic forces were correlated, yet they are not interchangeable because the losses in isometric force were 2 to 3 times greater than the reductions in Pmax and F0. This study also shows that the effect of race distance on fatigue measured in isometric mode is true when measured in dynamic mode.

Keywords: dynamic exercise; isometric maximal voluntary contraction; neuromuscular fatigue assessment; power-force-velocity profile.

PubMed Disclaimer

LinkOut - more resources