Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov:8:596699.
doi: 10.3389/fphy.2020.596699. Epub 2020 Nov 9.

Triggering Cation-Induced Contraction of Cytoskeleton Networks via Microfluidics

Affiliations

Triggering Cation-Induced Contraction of Cytoskeleton Networks via Microfluidics

Shea N Ricketts et al. Front Phys. 2020 Nov.

Abstract

The dynamic morphology and mechanics of the cytoskeleton is determined by interacting networks of semiflexible actin filaments and rigid microtubules. Active rearrangement of networks of actin and microtubules can not only be driven by motor proteins but by changes to ionic conditions. For example, high concentrations of multivalent ions can induce bundling and crosslinking of both filaments. Yet, how cytoskeleton networks respond in real-time to changing ion concentrations, and how actin-microtubule interactions impact network response to these changing conditions remains unknown. Here, we use microfluidic perfusion chambers and two-color confocal fluorescence microscopy to show that increasing magnesium ions trigger contraction of both actin and actin-microtubule networks. Specifically, we use microfluidics to vary the Mg2+ concentration between 2 and 20 mM while simultaneously visualizing the triggered changes to the overall network size. We find that as Mg2+ concentration increases both actin and actin-microtubule networks undergo bulk contraction, which we measure as the shrinking width of each network. However, surprisingly, lowering the Mg2+concentration back to 2 mM does not stop or reverse the contraction but rather causes both networks to contract further. Further, actin networks begin to contract at lower Mg2+ concentrations and shorter times than actin-microtubule networks. In fact, actin-microtubule networks only undergo substantial contraction once the Mg2+ concentration begins to lower from 20 mM back to 2 mM. Our intriguing findings shed new light on how varying environmental conditions can dynamically tune the morphology of cytoskeleton networks and trigger active contraction without the use of motor proteins.

Keywords: actin; cytoskeleton; microfluidics; microscopy; microtubules.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1 |
FIGURE 1 |
Experimental approach to triggering cation-induced contraction of cytoskeleton networks. (A) Cartoon of microfluidic device comprised of three channels separated by two semipermeable membranes (gray). The device has a central chamber containing the sample and two side channels used for buffer exchange. Buffer is pulled into the inlet and out of the outlet through capillary tubing using a syringe pump. The flow rate is set to allow for passive diffusion of buffer into the sample chamber as it flows from inlet to outlet. (B) Two-color laser scanning confocal images of an actin network (left) and an equimolar actin-microtubule network (right) where actin is magenta and microtubules are cyan. Scale bar is 50 μm.
FIGURE 2 |
FIGURE 2 |
Two-color confocal imaging of actin network undergoing contraction triggered by variation in Mg2+ concentration. Two-color laser scanning confocal images of an actin network (red) as the Mg2+ concentration slowly varies from 2 mM (green) to 20 mM (black) and back to 2 mM (green). Fluorescein in the 2 mM Mg2+ buffer (but not in the 20 mM Mg2+ buffer) is used to quantify the Mg2+ concentration as a function of time. Because it takes ~5 min for the buffer from the reservoir to enter the sample channel, the buffer channels in the first few images are black despite being at 2 mM Mg2+. At t = 30 min, the 20 mM Mg2+ solution is introduced, which is seen as the green signal intensity decaying to black. At t = 120 min, the 2 mM Mg2+ solution is reintroduced, viewed as increasing intensity in the green channel. Scale bar is 500 μm and time is in minutes.
FIGURE 3 |
FIGURE 3 |
Actin and actin-microtubule networks contract in response to continuous variation of Mg2+ concentration. The average width (left axis) of the actin network samples (magenta) and actin-microtubule network samples (cyan) as a function of time. The Mg2+ concentration (right axis) is also plotted (green line) as a function of time. The three phases of the experiment (I-III) are separated by dashed lines: I) 2 mM Mg2+ solution (original polymerization buffer) diffuses through the sample for 30 min II) exchange to 20 mM Mg2+ buffer is initiated and proceeds until 120 min III) 2 mM Mg2+ buffer is reintroduced for 50 min.
FIGURE 4 |
FIGURE 4 |
Cytoskeleton networks exhibit network-dependent contraction in response to both increasing and decreasing Mg2+ concentration (A) The average width of actin network samples (magenta) and actin-microtubule network samples (cyan) as a function of Mg2+ concentration. Experimental time is indicated in the symbol gradient coloring where t = 0 is cyan and magenta and t = 170 is light cyan and magenta. (B) The fractional amount of contraction measured for each Phase (I, II, III; described in the text), computed by Wf/Wi where Wi is the width at the beginning of the experiment and Wf is the width at the end of the corresponding Phase. The dashed lines separating the three Phases approximate the relative length of time of each phase. The corresponding Mg2+ concentration is depicted as a gradient with dark to light green indicating 2 to 20 mM Mg2+.

Similar articles

Cited by

References

    1. Cooper GM, Hausman R. The cell 2nd ed. Sunderland, MA: Sinauer Associates; (2000)
    1. Wen Q, Janmey PA, Polymer physics of the cytoskeleton. Curr Opin Solid State Mater Sci (2011) 15:177–82. doi:10.1016/j.cossms.2011.05.002 - DOI - PMC - PubMed
    1. Sanders LK, Xian W, Guáqueta C, Strohman MJ, Vrasich CR, Luijten E, et al. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media. Proc Natl Acad Sci USA (2007) 104:15994–9. doi:10.1073/pnas.0705898104 - DOI - PMC - PubMed
    1. Tuszyński J, Portet S, Dixon J, Luxford C, Cantiello H. Ionic wave propagation along actin filaments. Biophys J (2004) 86:1890–903. doi:10.1016/S0006-3495(04)74255-1 - DOI - PMC - PubMed
    1. Kim T, Kao MT, Hasselbrink EF, Meyhöfer E. Nanomechanical model of microtubule translocation in the presence of electric fields, Biophys J (2008) 94: 3880–92. doi:10.1529/biophysj.107.112755 - DOI - PMC - PubMed

LinkOut - more resources