Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 17;93(32):11321-11328.
doi: 10.1021/acs.analchem.1c02673. Epub 2021 Aug 9.

Integration of Chemical Derivatization and in-Source Fragmentation Mass Spectrometry for High-Coverage Profiling of Submetabolomes

Affiliations

Integration of Chemical Derivatization and in-Source Fragmentation Mass Spectrometry for High-Coverage Profiling of Submetabolomes

Na An et al. Anal Chem. .

Abstract

In-source fragmentation-based high-resolution mass spectrometry (ISF-HRMS) is a potential analytical technique, which is usually used to profile some specific compounds that can generate diagnostic neutral loss (NL) or fragment ion (FI) in ion source inherently. However, the ISF-HRMS method does not work for those compounds that cannot inherently produce diagnostic NL or FI in ion source. In this study, a derivatization-based in-source fragmentation-information-dependent acquisition (DISF-IDA) strategy was proposed for profiling the metabolites with easily labeled functional groups (submetabolomes) by liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-Q-TOF MS). As a proof-of-concept study, 36 carboxylated compounds labeled with N,N-dimethylethylenediamine (DMED) were selected as model compounds to examine performance of DISF-IDA strategy in screening the carboxylated metabolites and acquiring their MSn spectra. In ESI source, the DEMD-derived carboxylated compounds were fragmented to produce characteristic neutral losses of 45.0578, 63.0684, and/or 88.1000 Da that were further used as diagnostic features for screening the carboxylated metabolites by DISF-IDA-based LC-Q-TOF MS. Furthermore, high-resolution MSn spectra of the model compounds were also obtained within a single run of DISF-IDA-based LC-Q-TOF MS analysis, which contributed to the improvement of the annotation confidence. To further verify its applicability, DISF-IDA strategy was used for profiling carboxylated submetabolome in mice feces. Using this strategy, a total of 351 carboxylated metabolites were detected from mice feces, of which 178 metabolites (51% of the total) were positively or putatively identified. Moreover, DISF-IDA strategy was also demonstrated to be applicable for profiling other submetabolomes with easily labeled functional groups such as amino, carbonyl, and cis-diol groups. Overall, our proposed DISF-IDA strategy is a promising technique for high-coverage profiling of submetabolomes with easily labeled functional groups in biological samples.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources