Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones
- PMID: 34371353
- DOI: 10.1016/j.chemosphere.2021.131739
Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones
Abstract
Waste electrical and electronic equipment (WEEE) is one of the world's fastest-growing class of waste. WEEE contain a large amount of precious materials that have aroused the interest to develop new recycling technologies. Hence, effective recycling strategies are extremely necessary to promote the proper handling of these materials as well as for environmentally sound recovery of secondary raw resource. This paper reviews important existing methods and emerging technologies in WEEE management, with special emphasis in characterization, extraction and reclamation of precious materials from waste computer and mobile phones. Traditional pyrometallurgical and hydrometallurgical technologies still play a central role in the recovery of metals. More recently, emerging greener recycling technologies using microorganisms (i.e. biometallurgical), plasma arc fusion method and pretreatments (i.e. ultrasound and mechanochemical technologies) combined with other recycling methods (e.g. hydrometallurgical), and using less toxic solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs) have also been attempted to recycle metals from computer and mobile phone scrap. The role of analytical method development, especially using spectroanalytical methods for chemical inspection and e-waste sorting process at industrial applications is also discussed. This confirmed that most direct sampling techniques such as laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XFR) have several advantages over traditional sorting methods including rapid analytical response, without use of chemical reagents or waste generation, and greater reclamation of precious and critical materials in the WEEE stream.
Keywords: E-waste; Green chemistry; Metal recovery; Recycling technology; Spectroanalytical methods; WEEE management.
Copyright © 2021 Elsevier Ltd. All rights reserved.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources