Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2021 Aug 10;22(1):278.
doi: 10.1186/s12882-021-02490-z.

Chronic kidney disease linked to SARS-CoV-2 infection: a case report

Affiliations
Case Reports

Chronic kidney disease linked to SARS-CoV-2 infection: a case report

Georges Tarris et al. BMC Nephrol. .

Abstract

Background: The recent COVID-19 pandemic has raised concerns about patient diagnosis and follow-up of chronically ill patients. Patients suffering from chronic illnesses, concomitantly infected by SARS-CoV-2, globally tend to have a worse prognosis and poor outcomes. Renal tropism and acute kidney injury following SARS-CoV-2 infection has recently been described in the literature, with elevated mortality rates. Furthermore, patients with pre-existing chronic kidney disease, infected by SARS-CoV-2, should be monitored carefully. Here, we report the case of a 69-year-old patient with splenic marginal zone lymphoma, suffering from longstanding chronic kidney disease following SARS-CoV-2 infection.

Case presentation: A 69-year-old male patient previously diagnosed with pulmonary embolism and splenic marginal zone lymphoma (Splenomegaly, Matutes 2/5, CD5 negative and CD23 positive), was admitted to the hospital with shortness of breath, fever and asthenia. A nasopharyngeal swab test was performed in addition to a CT-scan, which confirmed SARS-CoV-2 infection. Blood creatinine increased following SARS-CoV-2 infection at 130 μmol/l, with usual values at 95 μmol/l. The patient was discharged at home with rest and symptomatic medical treatment (paracetamol and hydration), then readmitted to the hospital in August 2020. A kidney biopsy was therefore conducted as blood creatinine levels were abnormally elevated. Immunodetection performed in a renal biopsy specimen confirmed co-localization of SARS-CoV2 nucleocapsid and protease 3C proteins with ACE2, Lewis x and sialyl-Lewis x antigens in proximal convoluted tubules and podocytes. Co-localization of structural and non-structural viral proteins clearly demonstrated viral replication in proximal convoluted tubules in this chronically ill patient. Additionally, we observed the co-localization of sialyl-Lewis x and ACE2 receptors in the same proximal convoluted tubules. Reverse Transcriptase-Polymerase Chain Reaction test performed on the kidney biopsy was negative, with very low Ct levels (above 40). The patient was finally readmitted to the haematology department for initiation of chemotherapy, including CHOP protocol and Rituximab.

Conclusions: Our case emphasizes on the importance of monitoring kidney function in immunosuppressed patients and patients suffering from cancer following SARS-CoV-2 infection, through histological screening. Further studies will be required to decipher the mechanisms underlying chronic kidney disease and the putative role of sialyl-Lewis x and HBGA during SARS-CoV-2 infection.

Keywords: COVID-19; Case report; Chronic kidney disease; Chronic viral replication; Coronavirus; HBGA; Immunocompromised; Lewis antigens; SARS-CoV-2.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Histopathology and immunodetection assays in formalin-fixed paraffin embedded kidney biopsy from a 69-year-old patient suffering from chronic COVID-19 infection. A (HES, × 200) and B (PAS, × 200): grade I interstitial fibrosis associated with grade I tubular atrophy without glomerular damage; focal desquamation of the brush border of epithelial cells of proximal convoluted tubules (arrow), associated with focal sloughing of epithelial cells of proximal convoluted tubules with intra-tubular cell casts (arrowheads); C, D, E and I (× 600): co-detection of SARS-CoV-2 nucleoprotein (green fluorescence) and protease-3C (red fluorescence) in epithelial cells of proximal convoluted tubules (arrows) using anti-NP and anti-Prot3C mAb; F, G, H and J (× 600): co-detection of SARS-CoV-2 nucleoprotein (green fluorescence) and protease3C (red fluorescence) in the glomerular apparatus (arrows) using anti-NP and anti-Prot3C mAb; K (× 200): ACE2 detection on the brush border of epithelial cells of proximal convoluted tubules (arrowhead) using anti-ACE2 mAb. Positive detection is shown by brown staining; L (× 200): A antigen expression in glomerular capillary walls (arrowhead) and distal convoluted tubules (arrow) using anti-A mAb. Positive detection is shown by brown staining; M (× 200): Lex antigen expression in proximal convoluted tubules (arrowhead) and podocytes (arrow) using anti-Lex mAb. Positive detection is shown by brown staining; N (× 200): sialyl-Lex antigen expression in proximal convoluted tubules (arrowhead) and podocytes (arrow). Positive detection is shown by brown staining
Fig. 2
Fig. 2
Trends of renal function in a patient suffering from Chronic Kidney Disease following SARS-CoV-2 infection. eGFR: estimated Glomerular Filtration Rate

References

    1. Zhu H, Wei L, Niu P. The novel coronavirus outbreak in Wuhan, China. Glob Health Res Policy. 2020;5:6. 10.1186/s41256-020-00135-6. - PMC - PubMed
    1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. doi: 10.1038/s41564-020-0695-z. - DOI - PMC - PubMed
    1. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. doi: 10.3389/fimmu.2020.01708. - DOI - PMC - PubMed
    1. Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, Hu JL, Xu W, Zhang Y, Lv FJ, Su K, Zhang F, Gong J, Wu B, Liu XM, Li JJ, Qiu JF, Chen J, Huang AL. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200–1204. doi: 10.1038/s41591-020-0965-6. - DOI - PubMed
    1. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi: 10.1056/NEJMc2011400. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources