Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 3;86(17):11502-11518.
doi: 10.1021/acs.joc.1c01047. Epub 2021 Aug 11.

Multi-Ion Bridged Pathway of N-Oxides to 1,3-Dipole Dilithium Oxide Complexes

Affiliations

Multi-Ion Bridged Pathway of N-Oxides to 1,3-Dipole Dilithium Oxide Complexes

Martin J Neal et al. J Org Chem. .

Abstract

Roussi's landmark work on the generation of 1,3-dipoles from tertiary amine N-oxides has not reached its full potential since its underlying mechanism is neither well explored nor understood. Two competing mechanisms were previously proposed to explain the transformation involving either an iminium ion or a diradical intermediate. Our investigation has revealed an alternative mechanistic pathway that explains experimental results and provides significant insights to guide the creation of new N-oxide reagents beyond tertiary alkylamines for direct synthetic transformations. Truhlar's M06-2x functional and Møller-Plesset second-order perturbation theory with Dunning's [jul,aug]-cc-pv[D,T]z basis sets and discrete-continuum solvation models were employed to determine activation enthalpies and structures. During these mechanistic explorations, we discovered a unique multi-ion bridged pathway resulting from the rate-determining step, which was energetically more favorable than other alternate mechanisms. This newly proposed mechanism contains no electrophilic intermediates, strengthening the reaction potential by broadening the reagent scope and limiting the possible side reactions. This thoroughly defined general mechanism supports a more direct route for improving the use of N-oxides in generating azomethine ylide-dilithium oxide complexes with expanded functional group tolerance and breadth of chemistry.

PubMed Disclaimer

Publication types

LinkOut - more resources