Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 10;36(6):109501.
doi: 10.1016/j.celrep.2021.109501.

GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK

Affiliations
Free article

GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK

David Aguilar-Recarte et al. Cell Rep. .
Free article

Abstract

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates AMP-activated protein kinase (AMPK) and plays a crucial role in glucose and lipid metabolism. Here, we examine whether PPARβ/δ activation effects depend on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy metabolism. Pharmacological PPARβ/δ activation increases GDF15 levels and ameliorates glucose intolerance, fatty acid oxidation, endoplasmic reticulum stress, and inflammation, and activates AMPK in HFD-fed mice, whereas these effects are abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15-/- mice. The AMPK-p53 pathway is involved in the PPARβ/δ-mediated increase in GDF15, which in turn activates again AMPK. Consistently, Gdf15-/- mice show reduced AMPK activation in skeletal muscle, whereas GDF15 administration results in AMPK activation in this organ. Collectively, these data reveal a mechanism by which PPARβ/δ activation increases GDF15 levels via AMPK and p53, which in turn mediates the metabolic effects of PPARβ/δ by sustaining AMPK activation.

Keywords: AMPK; GDF15; PPARβ/δ; glucose tolerance; p53.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Publication types

MeSH terms

LinkOut - more resources