Structured fabrics with tunable mechanical properties
- PMID: 34381233
- DOI: 10.1038/s41586-021-03698-7
Structured fabrics with tunable mechanical properties
Abstract
Structured fabrics, such as woven sheets or chain mail armours, derive their properties both from the constitutive materials and their geometry1,2. Their design can target desirable characteristics, such as high impact resistance, thermal regulation, or electrical conductivity3-5. Once realized, however, the fabrics' properties are usually fixed. Here we demonstrate structured fabrics with tunable bending modulus, consisting of three-dimensional particles arranged into layered chain mails. The chain mails conform to complex shapes2, but when pressure is exerted at their boundaries, the particles interlock and the chain mails jam. We show that, with small external pressure (about 93 kilopascals), the sheets become more than 25 times stiffer than in their relaxed configuration. This dramatic increase in bending resistance arises because the interlocking particles have high tensile resistance, unlike what is found for loose granular media. We use discrete-element simulations to relate the chain mail's micro-structure to macroscale properties and to interpret experimental measurements. We find that chain mails, consisting of different non-convex granular particles, undergo a jamming phase transition that is described by a characteristic power-law function akin to the behaviour of conventional convex media. Our work provides routes towards lightweight, tunable and adaptive fabrics, with potential applications in wearable exoskeletons, haptic architectures and reconfigurable medical supports.
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Comment in
-
Chain-mail fabric stiffens under confining pressure.Nature. 2021 Aug;596(7871):196-197. doi: 10.1038/d41586-021-02116-2. Nature. 2021. PMID: 34381230 No abstract available.
References
-
- Chen, X., Taylor, L. W. & Tsai, L. J. An overview on fabrication of three-dimensional woven fabric preforms for composites. Text. Res. J. 81, 932–944 (2011).
-
- Engel, J. & Liu, C. Creation of a metallic micromachined chain mail fabric. J. Micromech. Microeng. 17, 551–556 (2007). - DOI
-
- Tabiei, A. & Nilakantan, G. Ballistic impact of dry woven fabric composites: a review. Appl. Mech. Rev. 61, 010801 (2008). - DOI
-
- Cai, L. et al. Warming up human body by nanoporous metallized polyethylene fabric. Nat. Commun. 8, 496 (2017). - DOI
-
- Stoppa, M. & Chiolerio, A. Wearable electronics and smart fabrics: a critical review. Sensors 14, 11957–11992 (2014). - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources