Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:2351:201-210.
doi: 10.1007/978-1-0716-1597-3_11.

Analysis of Enhancer-Promoter Interactions using CAGE and RADICL-Seq Technologies

Affiliations

Analysis of Enhancer-Promoter Interactions using CAGE and RADICL-Seq Technologies

Alessandro Bonetti et al. Methods Mol Biol. 2021.

Erratum in

  • Correction to: Enhancers and Promoters.
    Borggrefe T, Daniele Giaimo B. Borggrefe T, et al. Methods Mol Biol. 2021;2351:C1. doi: 10.1007/978-1-0716-1597-3_21. Methods Mol Biol. 2021. PMID: 35157265 No abstract available.

Abstract

Regulation of gene expression is a key feature for higher eukaryotes and how chromatin topology relates to gene activation is an intense area of research. Enhancer-promoter interactions are believed to mediate activation of target genes. Bidirectional transcription represents one hallmark of active enhancers that can be measured using transcriptome technologies such as Cap analysis of gene expression (CAGE). Recently, we have developed RNA and DNA interacting complexes ligated and sequenced (RADICL-Seq) a novel methodology to map genome-wide RNA-chromatin interactions in intact nuclei. Here, we describe how CAGE and RADICL-Seq data can be used to characterize enhancer elements and identify their target genes.

Keywords: Chromatin; Enhancer; Promoter; RNA; TSS.

PubMed Disclaimer

References

    1. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie KJ, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, Forrest ARR, Carninci P, Rehli M, Sandelin A (2014) An Atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461. https://doi.org/10.1038/nature12787 - DOI - PubMed - PMC
    1. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159(6):1327–1340. https://doi.org/10.1016/j.cell.2014.11.023 - DOI - PubMed - PMC
    1. Mishra A, Hawkins RD (2017) Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Med 9:1–14 - DOI
    1. Melgar MF, Collins FS, Sethupathy P (2011) Discovery of active enhancers through bidirectional expression of short transcripts. Genome Biol 12(11):R113. https://doi.org/10.1186/gb-2011-12-11-r113 - DOI - PubMed - PMC
    1. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635. https://doi.org/10.1038/ng1789 - DOI - PubMed

Publication types

LinkOut - more resources