Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning
- PMID: 34383724
- DOI: 10.1097/APO.0000000000000398
Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning
Conflict of interest statement
The authors have no funding or conflicts of interest to declare.
Comment in
-
Response to: Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Automated Machine Learning.Asia Pac J Ophthalmol (Phila). 2021 May-Jun 01;10(3):337. doi: 10.1097/01.APO.0000769904.75814.b5. Asia Pac J Ophthalmol (Phila). 2021. PMID: 34383725 No abstract available.
Comment on
-
Big Data in Ophthalmology.Asia Pac J Ophthalmol (Phila). 2020 Jul-Aug;9(4):291-298. doi: 10.1097/APO.0000000000000304. Asia Pac J Ophthalmol (Phila). 2020. PMID: 32739936 Review.
References
-
- Cheng CY, Soh ZD, Majithia S, et al. Big Data in Ophthalmology. Asia Pac J Ophthalmol (Phila) 2020; 9:291–298.
-
- Niemeijer M, Abramoff MD, Ginneken Bv. Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans Med Imaging 2007; 26:116–127.
-
- Faes L, Wagner SK, Fu DJ, et al. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health 2019; 1:e232–e242.
-
- Antaki F, Kahwati G, Sebag J, et al. Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience. Sci Rep 2020; 10:19528.
-
- Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003; 22:951–958.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
