Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties
- PMID: 34390990
- DOI: 10.1016/j.jcis.2021.08.025
Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties
Abstract
Recently, two-dimensional MXene demonstrated promising advantages to improve the flame-retardant performance of composites; however, its compatibility with polymer matrix is a great concern. In this study, MXene was first functionalized with phosphorylated chitosan (PCS) to obtain the PCS-MXene nanohybrid. The resulting nanohybrid was introduced into the thermoplastic polyurethane (TPU) matrix via solution mixing followed by the hot-pressing method, affording TPU/PCS-MXene nanocomposite. The resulting nanohybrid exhibited superior compatibility with the TPU matrix, enhancing mechanical performance of the TPU/PCS-MXene nanocomposite compared to the pristine TPU and TPU/MXene nanocomposite. Besides, the flame-retardant performance of TPU/PCS-MXene nanocomposite was greatly enhanced, while the smoke emission was effectively suppressed. As only 3 wt% PCS-MXene was introduced, peak heat release rate, total heat release, and total smoke production of the composite decreased by 66.7%, 21.0%, and 27.7%, respectively, compared to the pristine TPU. Systematical characterization was then carried out to investigate the enhancement mechanism of PCS-MXene, highlighting the crucial role of PCS combined with the catalytic effect of MXene. In brief, the compatibility issues of MXene were effectively addressed, and its flame-retardancy enhanced greatly via the PCS modification, the bio-based characteristic of which, in turn greatly benefits the further development of MXene-polymer composite.
Keywords: Flame retardant; Functionalized MXene; Mechanical properties; Smoke suppression; Thermoplastic polyurethane.
Copyright © 2021. Published by Elsevier Inc.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials