Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-liquid Phase Separation
- PMID: 34391803
- DOI: 10.1016/j.jmb.2021.167201
Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-liquid Phase Separation
Abstract
The transition between the native and amyloid states of proteins can proceed via a deposition pathway via oligomeric intermediates or via a condensation pathway involving liquid droplet intermediates generated through liquid-liquid phase separation. While several computational methods are available to perform sequence-based predictions of the propensity of proteins to aggregate via the deposition pathway, much less is known about the physico-chemical principles that underlie aggregation within condensates. Here we investigate the sequence determinants of aggregation via the condensation pathway, and identify three relevant features: droplet-promoting propensity, aggregation-promoting propensity and multimodal interactions quantified by the binding mode entropy. By using this approach, we show that it is possible to predict aggregation-promoting mutations in droplet-forming proteins associated with amyotrophic lateral sclerosis (ALS). This analysis provides insights into the amino acid code for the conversion of proteins between liquid-like and solid-like condensates.
Keywords: ALS mutations; aggregation; biomolecular condensates; liquid-liquid phase separation; protein interactions.
Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
