Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021;6(12):1078-1094.
doi: 10.1038/s41578-021-00358-0. Epub 2021 Aug 10.

Lipid nanoparticles for mRNA delivery

Affiliations
Review

Lipid nanoparticles for mRNA delivery

Xucheng Hou et al. Nat Rev Mater. 2021.

Abstract

Messenger RNA (mRNA) has emerged as a new category of therapeutic agent to prevent and treat various diseases. To function in vivo, mRNA requires safe, effective and stable delivery systems that protect the nucleic acid from degradation and that allow cellular uptake and mRNA release. Lipid nanoparticles have successfully entered the clinic for the delivery of mRNA; in particular, lipid nanoparticle-mRNA vaccines are now in clinical use against coronavirus disease 2019 (COVID-19), which marks a milestone for mRNA therapeutics. In this Review, we discuss the design of lipid nanoparticles for mRNA delivery and examine physiological barriers and possible administration routes for lipid nanoparticle-mRNA systems. We then consider key points for the clinical translation of lipid nanoparticle-mRNA formulations, including good manufacturing practice, stability, storage and safety, and highlight preclinical and clinical studies of lipid nanoparticle-mRNA therapeutics for infectious diseases, cancer and genetic disorders. Finally, we give an outlook to future possibilities and remaining challenges for this promising technology.

Keywords: Drug delivery; Drug development.

PubMed Disclaimer

Conflict of interest statement

Competing interestsY.D. is a scientific advisory board member of Oncorus, Inc. and serves as a consultant of Rubius Therapeutics. T.Z. is an employee of Moderna, Inc. R.L. is a founding scientific advisory board member of Alnylam and a founder and board member of Moderna, Inc. A list of entities with which R.L. is involved, compensated or uncompensated is provided in the supplementary information. X.H. declares no competing interests.

Figures

Fig. 1
Fig. 1. Timeline of some key milestones for mRNA and lipid nanoparticle development.
COVID-19, coronavirus disease 2019; EMA, European Medicines Agency; FDA, United States Food and Drug Administration; LNP, lipid nanoparticle.
Fig. 2
Fig. 2. Chemical structures of lipids and lipid derivatives used for mRNA delivery.
306Oi10, tetrakis(8-methylnonyl) 3,3′,3″,3‴-(((methylazanediyl) bis(propane-3,1 diyl))bis (azanetriyl))tetrapropionate; 9A1P9, decyl (2-(dioctylammonio)ethyl) phosphate; A2-Iso5-2DC18, ethyl 5,5-di((Z)-heptadec-8-en-1-yl)-1-(3-(pyrrolidin-1-yl)propyl)-2,5-dihydro-1H-imidazole-2-carboxylate; ALC-0315, ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate); ALC-0159, 2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide; β-sitosterol, (3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; BAME-O16B, bis(2-(dodecyldisulfanyl)ethyl) 3,3′-((3-methyl-9-oxo-10-oxa-13,14-dithia-3,6-diazahexacosyl)azanediyl)dipropionate; BHEM-Cholesterol, 2-(((((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)carbonyl)amino)-N,N-bis(2-hydroxyethyl)-N-methylethan-1-aminium bromide; C12-200, 1,1′-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl) (2-hydroxydodecyl)amino)ethyl) piperazin-1-yl)ethyl)azanediyl) bis(dodecan-2-ol); cKK-E12, 3,6-bis(4-(bis(2-hydroxydodecyl)amino)butyl)piperazine-2,5-dione; DC-Cholesterol, 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol; DLin-MC3-DMA, (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate; DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate; DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane; DOTMA, 1,2-di-O-octadecenyl-3-trimethylammonium-propane; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; ePC, ethylphosphatidylcholine; FTT5, hexa(octan-3-yl) 9,9′,9″,9‴,9″″,9‴″- ((((benzene-1,3,5-tricarbonyl)yris(azanediyl)) tris (propane-3,1-diyl)) tris(azanetriyl))hexanonanoate; Lipid H (SM-102), heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6- (undecyloxy)hexyl)amino) octanoate; OF-Deg-Lin, (((3,6-dioxopiperazine-2,5-diyl)bis(butane-4, 1-diyl))bis(azanetriyl))tetrakis(ethane-2,1-diyl) (9Z,9′Z,9″Z,9‴Z,12Z,12′Z,12″Z,12‴Z)-tetrakis (octadeca-9,12-dienoate); PEG2000-DMG, 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000; TT3, N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide.
Fig. 3
Fig. 3. Delivery barriers and administration routes for lipid nanoparticle–mRNA formulations.
a | Physiological barriers for lipid nanoparticle–mRNA (LNP–mRNA) formulations post systemic and local delivery. b | Administration routes for LNP–mRNA formulations. Panel b reprinted from ref., Springer Nature Limited.
Fig. 4
Fig. 4. Lipid nanoparticle–mRNA formulations as COVID-19 vaccines.
After intramuscular injection, lipid nanoparticle–mRNA (LNP–mRNA) vaccines are internalized by somatic cells (for example, muscle cells) and tissue-resident or recruited antigen-presenting cells (APCs),,,,. Moreover, LNP–mRNA vaccines can centre draining lymph nodes, where various immune cells reside, including naive T and B cells,,,,. Spike antigens expressed in the cytoplasm are degraded by proteasomes,,,, and major histocompatibility complex (MHC) class I presents the resultant epitopes to CD8+ T cells,,,,. Spike antigens can also be endocytosed by APCs. These antigens are degraded in the lysosomes of APCs and presented by MHC II molecules for CD4+ T cells,,,,. In addition, secreted spike antigens can be internalized by B cell receptors and processed for presentation to CD4+ T cells by MHC class II molecules,,,,. COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TCR, T cell receptor.

References

    1. Cobb M. Who discovered messenger RNA? Curr. Biol. 2015;25:R526–R532. - PubMed
    1. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 2014;13:759–780. - PubMed
    1. Wolff JA, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–1468. - PubMed
    1. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17:261–279. - PMC - PubMed
    1. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976;263:797–800. - PubMed