Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 28;15(9):14305-14315.
doi: 10.1021/acsnano.1c02932. Epub 2021 Aug 16.

Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation

Affiliations
Free article

Ultrathin Lubricant-Infused Vertical Graphene Nanoscaffolds for High-Performance Dropwise Condensation

Abinash Tripathy et al. ACS Nano. .
Free article

Abstract

Lubricant-infused surfaces (LIS) are highly efficient in repelling water and constitute a very promising family of materials for condensation processes occurring in a broad range of energy applications. However, the performance of LIS in such processes is limited by the inherent thermal resistance imposed by the thickness of the lubricant and supporting surface structure, as well as by the gradual depletion of the lubricant over time. Here, we present an ultrathin (∼70 nm) and conductive LIS architecture, obtained by infusing lubricant into a vertically grown graphene nanoscaffold on copper. The ultrathin nature of the scaffold, combined with the high in-plane thermal conductivity of graphene, drastically minimize earlier limitations, effectively doubling the heat transfer performance compared to a state-of-the-art CuO LIS surface. We show that the effect of the thermal resistance to the heat transfer performance of a LIS surface, although often overlooked, can be so detrimental that a simple nanostructured CuO surface can outperform a CuO LIS surface, despite filmwise condensation on the former. The present vertical graphene LIS is also found to be resistant to lubricant depletion, maintaining stable dropwise condensation for at least 24 h with no significant change of advancing contact angle and contact angle hysteresis. The lubricant consumed by the vertical graphene LIS is 52.6% less than that of the existing state-of-the-art CuO LIS, also making the fabrication process more economical.

Keywords: dropwise condensation; graphene; heat transfer; hydrophobicity; lubricant; nanostructures; slippery surfaces.

PubMed Disclaimer

LinkOut - more resources