Emerging roles of oxidative stress in brain aging and Alzheimer's disease
- PMID: 34416493
- DOI: 10.1016/j.neurobiolaging.2021.07.014
Emerging roles of oxidative stress in brain aging and Alzheimer's disease
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that are necessary for physiological function but can be toxic at high levels. Levels of these oxidative stressors increase gradually throughout the lifespan, impairing mitochondrial function and damaging all parts of the body, particularly the central nervous system. Emerging evidence suggests that accumulated oxidative stress may be one of the key mechanisms causing cognitive aging and neurodegenerative diseases such as Alzheimer's disease (AD). Here, we synthesize the current literature on the effect of neuronal oxidative stress on mitochondrial dysfunction, DNA damage and epigenetic changes related to cognitive aging and AD. We further describe how oxidative stress therapeutics such as antioxidants, caloric restriction and physical activity can reduce oxidation and prevent cognitive decline in brain aging and AD. Of the currently available therapeutics, we propose that long term physical activity is the most promising avenue for improving cognitive health by reducing ROS while promoting the low levels required for optimal function.
Keywords: Alzheimer's disease; Brain aging; Cognition; Exercise; Oxidative stress.
Published by Elsevier Inc.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical