Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 3;86(17):11434-11441.
doi: 10.1021/acs.joc.1c00929. Epub 2021 Aug 21.

Cyclic Peroxidic Carbon Dioxide Dimer Fuels Peroxyoxalate Chemiluminescence

Affiliations

Cyclic Peroxidic Carbon Dioxide Dimer Fuels Peroxyoxalate Chemiluminescence

Sandra M da Silva et al. J Org Chem. .

Abstract

Peroxyoxalate chemiluminescence is used in self-contained light sources, such as glow sticks, where oxidation of aromatic oxalate esters produces a high-energy intermediate (HEI) that excites fluorescence dyes via electron transfer chemistry, mimicking bioluminescence for efficient chemical energy-to-light conversion. The identity of the HEI and reasons for the efficiency of the peroxyoxalate reaction remain elusive. We present here unequivocal proof that the HEI of the peroxyoxalate system is a cyclic peroxidic carbon dioxide dimer, namely, 1,2-dioxetanedione. Oxalic peracids bearing a substituted phenyl group were unable to directly excite fluorescent dyes; hence, they could be ruled out as the HEI. However, base-catalyzed cyclization of these species results in bright chemiluminescence, with decay rates and chemiexcitation quantum yields that are influenced by the electronic phenylic substituent properties. Hammett (ρ = +2.2 ± 0.1) and Brønsted (β = -1.1 ± 0.1) constants for the cyclization step preceding chemiexcitation imply that the loss of the phenolate-leaving group and intramolecular nucleophilic attack of the percarboxylate anion occur in a concerted manner, generating 1,2-dioxetanedione as the unique outcome. The presence of better leaving groups influences the reaction mechanism, favoring the chemiluminescent reaction pathway over the nonemissive formation of aryl-1,2-dioxetanones.

PubMed Disclaimer

LinkOut - more resources