Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep:390:285-93.
doi: 10.1113/jphysiol.1987.sp016700.

The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle

Affiliations

The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle

J Lännergren et al. J Physiol. 1987 Sep.

Abstract

1. Isometric tension responses to electrical stimulation have been studied at 7.5 37.5 degrees C in single, intact fibres of the flexor digitorum brevis muscle of the mouse. A large number of reproducible tetani could be obtained at temperatures less than or equal to 35 degrees C. 2. The tetanic force per cross-sectional area generated at 25.0 degrees C was 375 +/- 56 kPa (mean +/- S.D., n = 16). 3. The curve relating maximum tetanic tension to temperature exhibited a transition between a level of almost unaltered force (25.0-32.5 degrees C) and a marked force decline (less than or equal to 20.0 degrees C). At temperatures higher than 35.0 degrees C force production was markedly depressed and this reduction was in some cases irreversible. 4. Twitch tension showed less regular dependence on temperature; it was reduced less than tetanic tension at low temperatures. Thus, the twitch/tetanus tension ratio was higher at low temperatures. 5. The times for twitch contraction and for twitch half-relaxation (i) ranged from 7 to 14 ms and from 6 to 15 ms at 35.0 degrees C and (ii) exhibited Q10 values of 3.2 +/- 0.4 and 4.0 +/- 0.6, respectively. 6. It is concluded that it is possible to use intact, single fibres dissected from mammalian skeletal muscle in physiological studies. Our results are close to previous results obtained from mammalian muscles except that the tetanic tension per cross-sectional area was found to be higher than commonly reported.

PubMed Disclaimer

References

    1. Physiol Rev. 1972 Jan;52(1):129-97 - PubMed
    1. Exp Neurol. 1985 Sep;89(3):491-502 - PubMed
    1. Biophys J. 1982 Nov;40(2):97-107 - PubMed
    1. Am J Physiol. 1967 Feb;212(2):313-6 - PubMed
    1. Exp Neurol. 1980 Nov;70(2):211-8 - PubMed

Publication types

LinkOut - more resources