Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Aug 7;27(29):4802-4817.
doi: 10.3748/wjg.v27.i29.4802.

Artificial intelligence in colonoscopy

Affiliations
Review

Artificial intelligence in colonoscopy

Joel Joseph et al. World J Gastroenterol. .

Abstract

Colorectal cancer remains a leading cause of morbidity and mortality in the United States. Advances in artificial intelligence (AI), specifically computer aided detection and computer-aided diagnosis offer promising methods of increasing adenoma detection rates with the goal of removing more pre-cancerous polyps. Conversely, these methods also may allow for smaller non-cancerous lesions to be diagnosed in vivo and left in place, decreasing the risks that come with unnecessary polypectomies. This review will provide an overview of current advances in the use of AI in colonoscopy to aid in polyp detection and characterization as well as areas of developing research.

Keywords: Artificial intelligence; Characterization; Colonoscopy; Computer-aided detection; Computer-aided diagnosis; Detection.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare that there are no any conflict of interests.

References

    1. American Cancer Society. Colorectal Cancer Facts & Figures 2020-2022. Atlanta: American Cancer Society, 2020.
    1. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, Baldi P. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology. 2018;155:1069–1078.e8. - PMC - PubMed
    1. Rex DK, Schoenfeld PS, Cohen J, Pike IM, Adler DG, Fennerty MB, Lieb JG 2nd, Park WG, Rizk MK, Sawhney MS, Shaheen NJ, Wani S, Weinberg DS. Quality indicators for colonoscopy. Gastrointest Endosc. 2015;81:31–53. - PubMed
    1. Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C, Lei L, Li L, Guo Z, Lei S, Xiong F, Wang H, Song Y, Pan Y, Zhou G. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol. 2020;5:343–351. - PubMed
    1. Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, Liu P, Li L, Song Y, Zhang D, Li Y, Xu G, Tu M, Liu X. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68:1813–1819. - PMC - PubMed

LinkOut - more resources