Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 4;12(17):4352-4372.
doi: 10.1002/cctc.202000626. Epub 2020 May 22.

Phosphine-Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3-Pyrrolines through Phosphonium Diene Intermediates

Affiliations

Phosphine-Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3-Pyrrolines through Phosphonium Diene Intermediates

Brian R Blank et al. ChemCatChem. .

Abstract

We have developed a phosphine-catalyzed (4+1) annulative rearrangement for the preparation of 3-pyrrolines from allenylic carbamates via phosphonium diene intermediates. We employed this methodology to synthesize an array of 1,3-disubstituted- and 1,2,3-trisubstituted-3-pyrrolines, including the often difficult to prepare 2-alkyl variants. A mechanistic investigation employing allenylic acetates and mononucleophiles unexpectedly unveiled that a phosphine-catalyzed (4+1) reaction for the construction of cyclopentene products, previously reported by Tong, might not occur through a phosphonium diene, as had been proposed, but rather through multiple mechanisms working in concert. Consequently, our phosphine-catalyzed rearrangement is most likely the first transformation to involve the unequivocal formation of a phosphonium diene intermediate along the reaction pathway. To demonstrate the synthetic utility of this newly developed reaction, we have completed concise formal syntheses of the pyrrolizidine alkaloids (±)-trachelanthamidine and (±)-supinidine.

Keywords: (4+1) annulation; 3-pyrroline; phosphine catalysis; phosphonium diene; pyrrolizidine alkaloid.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest The authors declare no conflict of interest.

Figures

Figure 1.
Figure 1.
Representative pyrrolizidine alkaloids.
Scheme 1.
Scheme 1.
Phosphine-catalyzed (4+1) reactions.
Scheme 2.
Scheme 2.
Conversion of allenylic carbamate 1 to phosphonium diene 2 and 3-pyrroline 3.
Scheme 3.
Scheme 3.
Mechanistic rationale for the formation of allenoate 12 from allenylic acetate 9 in the absence of Cs2CO3.
Scheme 4.
Scheme 4.
Plausible mechanism for Tong’s (4+1) reaction.
Scheme 5.
Scheme 5.
Plausible alternative mechanism for Tong’s (4+1) reaction.
Scheme 6.
Scheme 6.
Alternative pathway for the production of intermediate 22.
Scheme 7.
Scheme 7.
Reaction between allenylic acetate 9 and 19 in the presence of Cs2CO3.
Scheme 8.
Scheme 8.
Proposed mechanism for our phosphine-catalyzed (4+1) reaction.
Scheme 9.
Scheme 9.
Reaction of benzyl tosyl carbamate (39) with PPh3.
Scheme 10.
Scheme 10.
Formal synthesis of (±)-trachelanthamidine.
Scheme 11.
Scheme 11.
Formal synthesis of (±)-supinidine.

References

    1. Mattocks AR, Nature 1968, 217, 723–728; - PubMed
    2. Culvenor CCJ, Downing DT, Edgar JA, Jago MV, Ann. N. Y. Acad. Sci 1969, 163, 837–847;
    3. Mattocks AR, Chemistry and Toxicology of Pyrrolizidine Alkaloids, Academic Press, London, 1986, pp. 1–363.
    1. For reviews, see:

    2. Despinoy XLM, McNab H, Tetrahedron 2000, 56, 6359–6383;
    3. Liddell JR, Nat. Prod. Rep 2002, 19, 773–781, and references therein; - PubMed
    4. Vanecko JA, West FG, Heterocycles 2007, 74, 125–143.
    1. For examples, see the following reviews:

    2. Lu X, Zhang C, Xu Z, Acc. Chem. Res 2001, 34, 535–544; - PubMed
    3. Valentine DH Jr., Hillhouse JH, Synthesis 2003, 2003, 317–334;
    4. Methot JL, Roush WR, Adv. Synth. Catal 2004, 346, 1035–1050;
    5. Lu X, Du Y, Lu C, Pure Appl. Chem 2005, 77, 1985–1990;
    6. Nair V, Menon RS, Sreekanth AR, Abhilash N, Biju AT, Acc. Chem. Res 2006, 39, 520–530; - PubMed
    7. Kwong CK-W, Fu MY, Lam CS-L, Toy PH, Synthesis 2008, 2008, 2307–2317;
    8. Ye L-W, Zhou J, Tang Y, Chem. Soc. Rev 2008, 37, 1140–1152; - PubMed
    9. Denmark SE, Beutner GL, Angew. Chem. Int. Ed 2008, 47, 1560–1638; - PubMed
    10. Angew. Chem 2008, 120, 1584–1663;
    11. Aroyan CE, Dermenci A, Miller SJ, Tetrahedron 2009, 65, 4069–4084;
    12. Cowen BJ, Miller SJ, Chem. Soc. Rev 2009, 38, 3102–3116; - PubMed
    13. Marinetti A, Voituriez A, Synlett 2010, 2010, 174–194;
    14. Kolesinska B, Cent. Eur. J. Chem 2010, 8, 1147–1171;
    15. Pinho e Melo TMVD, Monatsh. Chem 2011, 142, 681–697;
    16. Lalli C, Brioche J, Bernadat G, Masson G, Curr. Org. Chem 2011, 15, 4108–4127;
    17. Wang S-X, Han X, Zhong F, Wang Y, Lu Y, Synlett 2011, 2011, 2766–2778;
    18. Zhou Z, Wang Y, Tang C, Curr. Org. Chem 2011, 15, 4083–4107;
    19. Zhao Q-Y, Lian Z, Wei Y, Shi M, Chem. Commun 2012, 48, 1724–1732; - PubMed
    20. Fan YC, Kwon O, in Science of Synthesis: Asymmetric Organocatalysis, Vol. 1, (Ed.: List B), Georg Thieme, Stuttgart, 2012; pp. 723–782;
    21. Chai Z, Zhao G, Catal. Sci. Technol 2012, 2, 29–41;
    22. Fan YC, Kwon O, Chem. Commun 2013, 49, 11588–11619; - PMC - PubMed
    23. Xu S, He Z, RSC Adv. 2013, 3, 16885–16904;
    24. Wang Y, Pan J, Chen Z, Sun X, Wang Z, Mini-Rev. Med. Chem 2013, 13, 836–844; - PubMed
    25. Wang Z, Kwon O, in Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis Drug Discovery, and Chemical Biology, (Ed.: Trabocchi A), John Wiley & Sons, Hoboken, 2013, pp. 97–133;
    26. Gomez C, Betzer J-F, Voituriez A, Marinetti A, ChemCatChem 2013, 5, 1055–1065;
    27. Xu L-W, ChemCatChem 2013, 5, 2775–2784;
    28. Xiao Y, Sun Z, Guo H, Kwon O, Beilstein J. Org. Chem 2014, 10, 2089–2121; - PMC - PubMed
    29. Wei Y, Shi M, Chem. Asian J 2014, 9, 2720–2734; - PubMed
    30. Wang Z, Xu X, Kwon O, Chem. Soc. Rev 2014, 43, 2927–2940; - PMC - PubMed
    31. Xu S, Tang Y, Lett. Org. Chem 2014, 11, 524–533;
    32. Xie P, Huang Y, Org. Biomol. Chem 2015, 13, 8578–8595; - PubMed
    33. Fan YC, Kwon O, in Lewis Base Catalysis, Vol. 2 (Eds.: Vedejs E, Denmark SE), Wiley-VCH, Weinheim, 2016, pp. 715–804;
    34. Xiao Y, Guo H, Kwon O, Aldrichimica Acta 2016, 49, 3–13; - PMC - PubMed
    35. Wang T, Han X, Zhong F, Yao W, Lu Y, Acc. Chem. Res 2016, 49, 1369–1378; - PubMed
    36. Li W, Zhang J, Chem. Soc. Rev 2016, 45, 1657–1677; - PubMed
    37. Lao Z, Toy PH, Beilstein J. Org. Chem 2016, 12, 2577–2587; - PMC - PubMed
    38. Voituriez A, Saleh N, Tetrahedron Lett. 2016, 57, 4443–4451;
    39. Zhou R, He Z, Eur. J. Org. Chem 2016, 2016, 1937–1954;
    40. Sun YL, Wei Y, Shi M, ChemCatChem 2017, 9, 718–727;
    41. Gao YN, Shi M, Chin. Chem. Lett 2017, 28, 493–502;
    42. Wei Y, Shi M, Org. Chem. Front 2017, 4, 1876–1890;
    43. Li H, Lu Y, Asian J. Org. Chem 2017, 6, 1130–1145;
    44. Karanam P, Reddy GM, Koppolu SR, Lin W, Tetrahedron Lett. 2018, 59, 59–76;
    45. Nallapati SB, Chuang S-C, Asian J. Org. Chem 2018, 7, 1743–1757;
    46. Ni H, Chan W-L, Lu Y, Chem. Rev 2018, 118, 9344–9411; - PubMed
    47. Guo H, Fan YC, Sun Z, Wu Y, Kwon O, Chem. Rev 2018, 118, 10049–10293; - PMC - PubMed
    48. Li E-Q, Huang Y, Chem. Commun, 2020, 56, 680–694. - PubMed
    1. Xu Z, Lu X, Tetrahedron Lett. 1997, 38, 3461–3464;
    2. Lu X, Xu Z, J. Org. Chem 1998, 63, 5031–5041;
    3. Xu Z, Lu X, Tetrahedron Lett. 1999, 40, 549–552.
    1. For modifications of Lu’s reaction, see the following: For an example of [3+2] annulations of allenoates with N-thiophosphorylimines, see:

    2. Zhang B, Xu S, Wu G, He Z, Tetrahedron 2008, 64, 9471–9479.
    3. For examples of [3+2] cycloadditions between allenoates and cyclic aldimines or ketimines, see:

    4. Chen X-Y, Lin R-C, Ye S, Chem. Commun 2012, 48, 1317–1319; - PubMed
    5. Yu H, Zhang L, Yang Z, Li Z, Zhao Y, Xiao Y, Guo H, J. Org. Chem 2013, 78, 8427–8436; - PubMed
    6. Wang Y-Q, Zhang Y, Dong H, Zhang J, Zhao J, Eur. J. Org. Chem 2013, 2013, 3764–3770;
    7. Yang L-J, Wang S, Nie J, Li S, Ma J-A, Org. Lett 2013, 15, 5214–5217; - PubMed
    8. Yang L-J, Li S, Wang S, Nie J, Ma J-A, J. Org. Chem 2014, 79, 3547–3558. - PubMed
    9. For examples of 2,3-pentadienenitriles being employed in the [3+2] annulation with imines, see:;

    10. Kinderman SS, van Maarseveen JH, Hiemstra H, Synlett 2011, 2011, 1693–1696.
    11. For an example of [3+2] annulations of allenoates with N-aryl fluorinated imines, see:

    12. Zhu Z, Guo Y, Wang X, Wu F, Wu Y, J. Fluorine Chem 2017, 195, 102–107.