Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct:277:121071.
doi: 10.1016/j.biomaterials.2021.121071. Epub 2021 Aug 13.

Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy

Affiliations

Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy

Huijing Xiang et al. Biomaterials. 2021 Oct.

Abstract

Catalytic cascade transformations, which occur in spatially constrained tumor environment to generate therapeutic moieties from prodrugs or intrinsic species, are highly desirable for precise cancer therapy. Nevertheless, it is high challenging to engineer a cascade nanoreactor with tumor microenvironment (TME)-responsive capability for synergistic tumor therapy. Inspired by the biocatalytic cascades in biological processes, here, a tumor-specific nanoreactor was established to activate cascade reactions for oxidative stress-augmented chemotherapy by the integration of an artificial enzyme, Pt(IV)-based prodrug (Pt(IV)), with Cu(II)-based metal-organic frameworks (CuMOF). Upon internalization of CuMOF@Pt(IV) by tumor cells, in addition to chemotherapeutic effect, the activated cisplatin by glutathione (GSH) reduction is capable of acting as an artificial enzyme to elevate the hydrogen peroxide (H2O2) level through cascade reactions for augmenting the therapeutic efficacy of Cu+-mediated chemodynamic therapy (CDT). Meanwhile, CuMOF@Pt(IV) specifically deplete overexpressed GSH at tumor sites, thus amplifying tumor oxidative stress, and finally leading to augmented antitumor efficacy. The orchestrated cooperative effect of chemotherapy and oxidative stress presents splendid therapeutic efficacy on tumor-bearing mice with negligible adverse effects. Therefore, this cascade nanoreactor provides exciting opportunities to develop complementary therapeutic modalities for precise cancer treatment.

Keywords: Cascade nanoreactor; Chemotherapy; Metal-organic frameworks; Nanomedicine; Oxidative stress.

PubMed Disclaimer

Publication types

LinkOut - more resources