Engineered EVs for Oxidative Stress Protection
- PMID: 34451800
- PMCID: PMC8399368
- DOI: 10.3390/ph14080703
Engineered EVs for Oxidative Stress Protection
Abstract
Extracellular vesicles (EVs) are increasingly studied as vectors for drug delivery because they can transfer a variety of molecules across biological barriers. SerpinB3 is a serine protease inhibitor that has shown a protective anti-apoptotic function in a variety of stressful conditions. The aim of this study was to evaluate protection from oxidative stress-induced damage, using extracellular vesicles that overexpress SerpinB3 (EVs-SB3) in order to enhance the effect of extracellular vesicles on cellular homeostasis. EVs-SB3s were obtained from HepG2 cells engineered to overexpress SerpinB3 and they revealed significant proteomic changes, mostly characterized by a reduced expression of other proteins compared with EVs from non-engineered cells. These EV preparations showed a significantly higher protection from H2O2 induced oxidative stress in both the hepatoma cell line and in primary cardiomyocytes, compared to cells treated with naïve EVs or SerpinB3 alone, used at the same concentration. In conclusion, the induction of SerpinB3 transgene expression results in the secretion of EVs enriched with the protein product that exhibits enhanced cytoprotective activity, compared with naïve EVs or the nude SerpinB3 protein.
Keywords: SerpinB3; cytoprotection; extracellular vesicles; oxidative stress.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures





References
-
- Silverman G.A., Bird P.I., Carrell R.W., Church F.C., Coughlin P.B., Gettins P.G., Irving J.A., Lomas D.A., Luke C.J., Moyer R.W., et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem. 2001;276:33293–33296. doi: 10.1074/jbc.R100016200. - DOI - PubMed
-
- Silverman G.A., Whisstock J.C., Bottomley S.P., Huntington J.A., Kaiserman D., Luke C.J., Pak S.C., Reichhart J.M., Bird P.I. Serpins flex their muscle: I. Putting the clamps, on proteolysis in diverse biological systems. J. Biol. Chem. 2010;285:24299–24305. doi: 10.1074/jbc.R110.112771. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials