Rab29 Fast Exchange Mutants: Characterization of a Challenging Rab GTPase
- PMID: 34453707
- DOI: 10.1007/978-1-0716-1346-7_2
Rab29 Fast Exchange Mutants: Characterization of a Challenging Rab GTPase
Abstract
Rab29 has been implicated in multiple membrane trafficking processes with no described effectors or regulating proteins. Its fast nucleotide exchange rate and inability to bind GDI in cytosol make it a unique and poorly understood Rab. Because the conventional, "GTP-locked" Rab mutation does not have the desired effect in Rab29, we present here the use of a fluorescence-based assay to characterize novel Rab29 mutants (I64T and V156G) that display faster nucleotide exchange rates, allowing for GEF-independent Rab29 activation.
Keywords: Fast exchange mutant; MANT-GDP; Nucleotide exchange; Rab GTPase; Rab29.
© 2021. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
The atypical Rab GTPase associated with Parkinson's disease, Rab29, is localized to membranes.J Biol Chem. 2022 Oct;298(10):102499. doi: 10.1016/j.jbc.2022.102499. Epub 2022 Sep 16. J Biol Chem. 2022. PMID: 36116551 Free PMC article.
-
Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation.Elife. 2014 Feb 11;3:e01623. doi: 10.7554/eLife.01623. Elife. 2014. PMID: 24520163 Free PMC article.
-
A guanine nucleotide exchange factor (GEF) limits Rab GTPase-driven membrane fusion.J Biol Chem. 2018 Jan 12;293(2):731-739. doi: 10.1074/jbc.M117.812941. Epub 2017 Nov 28. J Biol Chem. 2018. PMID: 29184002 Free PMC article.
-
Molecular control of Rab activity by GEFs, GAPs and GDI.Small GTPases. 2018 Mar 4;9(1-2):5-21. doi: 10.1080/21541248.2016.1276999. Epub 2017 Feb 1. Small GTPases. 2018. PMID: 28055292 Free PMC article. Review.
-
Rab35: GEFs, GAPs and effectors.Traffic. 2013 Nov;14(11):1109-17. doi: 10.1111/tra.12096. Epub 2013 Aug 21. Traffic. 2013. PMID: 23905989 Review.
Cited by
-
Genome-wide screen reveals Rab12 GTPase as a critical activator of Parkinson's disease-linked LRRK2 kinase.Elife. 2023 Oct 24;12:e87098. doi: 10.7554/eLife.87098. Elife. 2023. PMID: 37874635 Free PMC article.
-
A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation.Elife. 2022 Sep 23;11:e79771. doi: 10.7554/eLife.79771. Elife. 2022. PMID: 36149401 Free PMC article.
References
-
- Shoji I, Kikuchi A, Kuroda S, Takai Y (1989) Kinetic analysis of the binding of guanine nucleotide to bovine brain smg p25A. Biochem Biophys Res Commun 162(1):273–281. https://doi.org/10.1016/0006-291x(89)91992-x - DOI - PubMed
-
- Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K (2003) Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302(5645):646–650. https://doi.org/10.1126/science.1087761 - DOI - PubMed
-
- Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22(4):461–470. https://doi.org/10.1016/j.ceb.2010.04.007 - DOI - PubMed - PMC
-
- Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877. https://doi.org/10.1016/j.cell.2007.05.018 - DOI - PubMed
-
- Gavriljuk K, Gazdag EM, Itzen A, Kötting C, Goody RS, Gerwert K (2012) Catalytic mechanism of a mammalian Rab·RabGAP complex in atomic detail. Proc Natl Acad Sci U S A 109(52):21348–21353. https://doi.org/10.1073/pnas.1214431110 - DOI - PubMed - PMC
MeSH terms
Substances
LinkOut - more resources
Full Text Sources