Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2021 Aug 28;16(1):166.
doi: 10.1186/s13014-021-01879-2.

Neuro-ophthalmologic outcomes of standard versus hypo-fractionated stereotactic radiotherapy of AVPM

Affiliations
Comparative Study

Neuro-ophthalmologic outcomes of standard versus hypo-fractionated stereotactic radiotherapy of AVPM

Leor Zach et al. Radiat Oncol. .

Abstract

Background: Most anterior visual pathway meningiomas (AVPM) are benign and slow-growing, but these tumors may affect visual functions, including visual acuity (VA) and visual field (VF). Due to location, most are treated non-surgically by fractionated stereotactic radiotherapy (FSRT), aiming to prevent tumor progression and visual functions deterioration. Unfortunately, FSRT in itself may affect visual functions. The current preferred treatment regimen (in terms of safety and effectiveness) is undetermined. While most cases are treated with conventional fractionation (cFSRT)-50.4-54 Gy in 28-30 fractions of 1.8-2 Gy, advances in technology have allowed shortening of total treatment length to hypofractionation (hSRT)-25-27 Gy in 3-5 fractions of 5-9 Gy. Our aim was to evaluate the association of radiotherapy regimen for treating AVPM (cFSRT vs. hSRT) with visual function outcomes (VA, VF) at the last neuro-ophthalmologic evaluation.

Methods: We conducted a retrospective cohort study of AVPM cases treated at Sheba Medical Center during 2004-2015. We compared cFSRT and hSRT regimens regarding visual function (VA, VF) outcomes at the last neuro-ophthalmologic evaluation. VA was determined by the logarithm of the minimum angle of resolution (LogMAR). VF was determined by the mean deviation (MD). A clinically relevant change in VA was defined as 0.2 LogMAR.

Results: 48 patients (13 receiving hSRT, 35 receiving cFSRT) were included, with a median follow-up of 55 months. No significant difference was evident regarding LogMAR or MD of involved eyes at the last evaluation. Six (17%) patients in the cFSRT group experienced clinically relevant VA deterioration in the involved eye, compared with six (46%) in hSRT (p = 0.06).

Conclusion: Our findings, using comprehensive and meticulous investigation of visual outcomes, suggest that hSRT may be associated with higher risk for VA and VF deterioration in AVPM especially in ONSM. We recommend the use of cFSRT for ONSM.

PubMed Disclaimer

Conflict of interest statement

All authors declare they have no competing interests.

Figures

Fig. 1
Fig. 1
Inclusion and exclusion criteria of the study population. 288 patients with a radiological diagnosis of AVPM were treated with radiotherapy at Sheba Medical Center between 2004–2015. We included patients with a radiological diagnosis of meningioma whose tumors were in defined anatomical locations near the optic nerves and whose neuro-ophthalmology and neuroimaging data were available. We excluded patients having previous stereotactic radiosurgery treatment (SRS), lacking visual acuity documentation before treatment, having no light perception (NLP) prior to treatment, or undergoing additional treatment before the first neuro-ophthalmologic assessment. hSRT, hypofractionated stereotactic radiotherapy; cFSRT, conventionally fractionated stereotactic radiotherapy
Fig. 2
Fig. 2
Radiation plan and Dose Volume Hisogram for AVPM patients with and without optic nerve sheath (ONSM) involvement. Both AVPM patients received hypofractionated radiosurgery (hSRT) in 5 sessions × 500 cGy, with maximum dose of 31.25 Gy. Optical apparatus (left and right optic nerve, optic chiasm) was marked in treatment plans of both patients and DVHs were calculated. A Radiation plan for Optic Nerve Sheath Meningioma (ONSM) patient. B Radiation plan for non-ONSM AVPM patient. Comparison of Optic apparatus DVH reveals that in the ONSM patient (C) a higher radiation dose was absorbed by the nerve sheath while in the perioptic non-ONSM AVPM patient (D) the same radiation dose to the tumor resulted in smaller dose to the nerve sheath. We believe the combination of pre-treatment nerve damage and the high dose to the nerve explain the increased visual damage we see in ONSM patients treated with hSRT and suggest this cohort should be treated with cFSRT

References

    1. Kansu T. Neuro-ophthalmology of Meningiomas. In: Pamir MN, Black PM, Fahlbusch R, eds. Meningiomas. Elsevier; 2010:177–189. 10.1016/B978-1-4160-5654-6.00012-X.
    1. Marosi C, Hassler M, Roessler K, et al. Meningioma. Crit Rev Oncol Hematol. 2008;67(2):153–171. doi: 10.1016/j.critrevonc.2008.01.010. - DOI - PubMed
    1. Pamir MN, Black PM, Fahlbusch R. CHAPTER 18—decision making in meningiomas. In: Pamir MN, Black PM, Fahlbusch R, eds. Meningiomas. W.B. Saunders; 2010:275–289. 10.1016/B978-1-4160-5654-6.00018-0.
    1. Wilson WB. Meningiomas of the anterior visual system. Surv Ophthalmol. 1981;26(3):109–127. doi: 10.1016/0039-6257(81)90060-6. - DOI - PubMed
    1. Stiebel-Kalish H, Reich E, Gal L, et al. Visual outcome in meningiomas around anterior visual pathways treated with linear accelerator fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):779–788. doi: 10.1016/j.ijrobp.2010.12.017. - DOI - PubMed

Publication types

LinkOut - more resources