Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep;160(3):401-409.
doi: 10.1016/j.ajodo.2021.04.005.

An in vitro evaluation of orthodontic aligner biomechanics around the maxillary arch

Affiliations

An in vitro evaluation of orthodontic aligner biomechanics around the maxillary arch

Harsimrat Kaur et al. Am J Orthod Dentofacial Orthop. 2021 Sep.

Abstract

Introduction: The objective of this study was to evaluate the forces and moments exerted by orthodontic aligners on 3 different displaced maxillary teeth and their adjacent supporting teeth.

Methods: An in vitro orthodontic simulator was used to measure the forces and moments of a 0.75-mm thick glycol-modified polyethylene terephthalate material for 3 maxillary teeth: central incisor, canine, and second premolar. Forces and moments were recorded for tested teeth displaced lingually one by one for 0.20 mm. Repeated measures of multivariate analysis of variance was used to assess the outcome.

Results: The mean buccolingual force applied on a displaced canine (2.25 ± 0.38 N) was significantly (P <0.001) more than the central incisor (1.49 ± 0.18 N) and second premolar (1.50 ± 0.16 N). The mean moment (that tends to tip the teeth buccally) exerted on a canine (-20.11 ± 5.27 Nmm) was significantly more (P <0.001) than the central incisor (-8.42 ± 1.67 Nmm) and second premolar (-11.45 ± 1.29 Nmm). The forces and moments acting on teeth adjacent to the displaced tooth were clinically significant and acted in opposing directions to those on the displaced tooth.

Conclusions: The results of this study highlighted that for the same amount of displacement on a given tooth, the forces and moments imposed by the orthodontic aligner depend on location around the arch. These findings highlight the need to further study aligner mechanics around the dental arch and optimize aligner design to impose desired mechanical loads to avoid detrimental effects during orthodontic tooth movement.

PubMed Disclaimer

LinkOut - more resources