Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 30;21(1):889.
doi: 10.1186/s12879-021-06517-6.

Duration of SARS-CoV-2 sero-positivity in a large longitudinal sero-surveillance cohort: the COVID-19 Community Research Partnership

Collaborators

Duration of SARS-CoV-2 sero-positivity in a large longitudinal sero-surveillance cohort: the COVID-19 Community Research Partnership

COVID-19 Community Research Partnership Study Group. BMC Infect Dis. .

Abstract

Background: Estimating population prevalence and incidence of prior SARS-CoV-2 infection is essential to formulate public health recommendations concerning the COVID-19 pandemic. However, interpreting estimates based on sero-surveillance requires an understanding of the duration of elevated antibodies following SARS-CoV-2 infection, especially in the large number of people with pauci-symptomatic or asymptomatic disease.

Methods: We examined > 30,000 serology assays for SARS-CoV-2 specific IgG and IgM assays acquired longitudinally in 11,468 adults between April and November 2020 in the COVID-19 Community Research Partnership.

Results: Among participants with serologic evidence for infection but few or no symptoms or clinical disease, roughly 50% sero-reverted in 30 days of their initial positive test. Sero-reversion occurred more quickly for IgM than IgG and for antibodies targeting nucleocapsid protein compared with spike proteins, but was not associated with age, sex, race/ethnicity, or healthcare worker status.

Conclusions: The short duration of antibody response suggests that the true population prevalence of prior SARS-CoV-2 infection may be significantly higher than presumed based on earlier sero-surveillance studies. The impact of the large number of minimally symptomatic COVID-19 cases with only a brief antibody response on population immunity remains to be determined.

Keywords: COVID-19; Humoral response; Sero-surveillance.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Distribution of enrollment of participants and serology tests as a function of time. A Number of participants enrolled (blue line—upper pane), and number (red line—upper pane) and percent (green line—lower pane) of participants who seroconverted from April 4th 2020 to Jan. 9th 2021. By Jan 2021 roughly 10% of the serology cohort had seroconverted. B Number of positive and negative tests from April 4th 2020 to Jan. 9th 2021. The monthly test positive rate roughly reflects the rate of community transmission in the study cohort as a function of time. C Distribution of longitudinal tests following an initial positive result. Each dot represents an individual test plotted on the y-axis based on time since the first positive test (indicated as kit# 0 on the x-axis). As of Jan 4, 2021, 11 participants had completed 6 tests following an initial positive test. D Percent of positive tests as a function of time following initial seroconversion
Fig. 2
Fig. 2
Semi-parametric and parametric (Weibull) cox proportional hazard models of sero-reversion. Prob50% indicates the parametric estimate of time when 50% of the sero-positive cohort has become sero-negative. A Overall rate of sero-reversion for IgM or IgG. B Comparison of pauci- and asymptomatic vs. clinically-defined COVID cases. C Comparison of rates of IgM vs IgG sero-reversion. D Comparison of sero-reversion rates based on follow-up testing using the Syntron test targeting antibodies to nucleocapsid proteins and the Teco test targeting a combination spike and nucleocapsid proteins

References

    1. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, Sanmartín JL, Fernández-García A, Cruz I, Fernández de Larrea N, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535–544. doi: 10.1016/S0140-6736(20)31483-5. - DOI - PMC - PubMed
    1. Menachemi N, Yiannoutsos CT, Dixon BE, Duszynski TJ, Fadel WF, Wools-Kaloustian KK, Unruh Needleman N, Box K, Caine V, Norwood C, et al. Population point prevalence of SARS-CoV-2 infection based on a statewide random sample—Indiana, April 25–29, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(29):960–964. doi: 10.15585/mmwr.mm6929e1. - DOI - PMC - PubMed
    1. Hanson KE, Caliendo AM, Arias CA, Englund JA, Hayden MK, Lee MJ, Loeb M, Patel R, Altayar O, El Alayli A, et al. Infectious Diseases Society of America Guidelines on the diagnosis of COVID-19: serologic testing. Clin Infect Dis. 2020 doi: 10.1093/cid/ciab557. - DOI - PMC - PubMed
    1. Ripperger TJ, Uhrlaub JL, Watanabe M, Wong R, Castaneda Y, Pizzato HA, Thompson MR, Bradshaw C, Weinkauf CC, Bime C, et al. Orthogonal SARS-CoV-2 serological assays enable surveillance of low-prevalence communities and reveal durable humoral immunity. Immunity. 2020;53(5):925–933.e924. doi: 10.1016/j.immuni.2020.10.004. - DOI - PMC - PubMed
    1. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, Saemundsdottir J, Sigurdsson A, Sulem P, Agustsdottir AB, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302–2315. doi: 10.1056/NEJMoa2006100. - DOI - PMC - PubMed