Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 1:802:149769.
doi: 10.1016/j.scitotenv.2021.149769. Epub 2021 Aug 24.

Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest

Affiliations

Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest

Joan Llusià et al. Sci Total Environ. .

Abstract

Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 μg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 μg m-2 h-1) and P (sesquiterpenes: 210 μg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.

Keywords: French Guyana; Monoterpenes; Nutrients; Season; Sesquiterpenes; Topographic elevation.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources