Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct:210:106372.
doi: 10.1016/j.cmpb.2021.106372. Epub 2021 Aug 27.

MedmeshCNN - Enabling meshcnn for medical surface models

Affiliations

MedmeshCNN - Enabling meshcnn for medical surface models

Lisa Schneider et al. Comput Methods Programs Biomed. 2021 Oct.

Abstract

Background and objective: MeshCNN is a recently proposed Deep Learning framework that drew attention due to its direct operation on irregular, non-uniform 3D meshes. It outperformed state-of-the-art methods in classification and segmentation tasks of popular benchmarking datasets. The medical domain provides a large amount of complex 3D surface models that may benefit from processing with MeshCNN. However, several limitations prevent outstanding performances on highly diverse medical surface models. Within this work, we propose MedMeshCNN as an expansion dedicated to complex, diverse, and fine-grained medical data.

Methods: MedMeshCNN follows the functionality of MeshCNN with a significantly increased memory efficiency that allows retaining patient-specific properties during processing. Furthermore, it enables the segmentation of pathological structures that often come with highly imbalanced class distributions.

Results: MedMeshCNN achieved an Intersection over Union of 63.24% on a highly complex part segmentation task of intracranial aneurysms and their surrounding vessel structures. Pathological aneurysms were segmented with an Intersection over Union of 71.4%.

Conclusions: MedMeshCNN enables the application of MeshCNN on complex, fine-grained medical surface meshes. It considers imbalanced class distributions derived from pathological findings and retains patient-specific properties during processing.

Keywords: Convolutional neural network; Geometric deep learning; Intracranial aneurysms; Mesh processing; Shape segmentation; Surface models.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard Preim, Sylvia Saalfeld declare that there is no conflict of interest

MeSH terms

LinkOut - more resources