Optimal responsiveness and information flow in networks of heterogeneous neurons
- PMID: 34475456
- PMCID: PMC8413388
- DOI: 10.1038/s41598-021-96745-2
Optimal responsiveness and information flow in networks of heterogeneous neurons
Erratum in
-
Author Correction: Optimal responsiveness and information flow in networks of heterogeneous neurons.Sci Rep. 2024 Apr 29;14(1):9805. doi: 10.1038/s41598-024-59898-4. Sci Rep. 2024. PMID: 38684730 Free PMC article. No abstract available.
Abstract
Cerebral cortex is characterized by a strong neuron-to-neuron heterogeneity, but it is unclear what consequences this may have for cortical computations, while most computational models consider networks of identical units. Here, we study network models of spiking neurons endowed with heterogeneity, that we treat independently for excitatory and inhibitory neurons. We find that heterogeneous networks are generally more responsive, with an optimal responsiveness occurring for levels of heterogeneity found experimentally in different published datasets, for both excitatory and inhibitory neurons. To investigate the underlying mechanisms, we introduce a mean-field model of heterogeneous networks. This mean-field model captures optimal responsiveness and suggests that it is related to the stability of the spontaneous asynchronous state. The mean-field model also predicts that new dynamical states can emerge from heterogeneity, a prediction which is confirmed by network simulations. Finally we show that heterogeneous networks maximise the information flow in large-scale networks, through recurrent connections. We conclude that neuronal heterogeneity confers different responsiveness to neural networks, which should be taken into account to investigate their information processing capabilities.
© 2021. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures





References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources