Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep;9(9):e002627.
doi: 10.1136/jitc-2021-002627.

Development of preclinical and clinical models for immune-related adverse events following checkpoint immunotherapy: a perspective from SITC and AACR

Affiliations
Review

Development of preclinical and clinical models for immune-related adverse events following checkpoint immunotherapy: a perspective from SITC and AACR

Nicholas L Bayless et al. J Immunother Cancer. 2021 Sep.

Abstract

Recent advances in cancer immunotherapy have completely revolutionized cancer treatment strategies. Nonetheless, the increasing incidence of immune-related adverse events (irAEs) is now limiting the overall benefits of these treatments. irAEs are well-recognized side effects of some of the most effective cancer immunotherapy agents, including antibody blockade of the cytotoxic T-lymphocyte-associated protein 4 and programmed death protein 1/programmed-death ligand 1 pathways. To develop an action plan on the key elements needed to unravel and understand the key mechanisms driving irAEs, the Society for Immunotherapy for Cancer and the American Association for Cancer Research partnered to bring together research and clinical experts in cancer immunotherapy, autoimmunity, immune regulation, genetics and informatics who are investigating irAEs using animal models, clinical data and patient specimens to discuss current strategies and identify the critical next steps needed to create breakthroughs in our understanding of these toxicities. The genetic and environmental risk factors, immune cell subsets and other key immunological mediators and the unique clinical presentations of irAEs across the different organ systems were the foundation for identifying key opportunities and future directions described in this report. These include the pressing need for significantly improved preclinical model systems, broader collection of biospecimens with standardized collection and clinical annotation made available for research and integration of electronic health record and multiomic data with harmonized and standardized methods, definitions and terminologies to further our understanding of irAE pathogenesis. Based on these needs, this report makes a set of recommendations to advance our understanding of irAE mechanisms, which will be crucial to prevent their occurrence and improve their treatment.

Keywords: autoimmunity; immunotherapy; translational medical research.

PubMed Disclaimer

Conflict of interest statement

Competing interests: JAB is a cofounder, CEO and a Board member of Sonoma Biotherapeutics (with salary and ownership interests). He is a cofounder of Celsius Therapeutics with ownership interests; a member of the Board of Directors of Gilead and Provention Bio with compensation and ownership interests, and the Parker Institute for Cancer Immunotherapy; and is a member of the scientific advisory boards of Arcus Biosciences, Solid Biosciences, Rheos Medicines and Vir Biotechnology. LHB has received consulting fees from Calidi, Takeda, Western Oncolytics, Khloris, Pyxis, Cytomix, Roche-Genentech, DC Prime and RAPT in the last 24 months. EMJ is a paid consultant for Adaptive Biotech, CSTONE, Achilles, DragonFly, Candel Therapeutics and Genocea. She receives funding from Lustgarten Foundation and Bristol Myer Squibb. She is the Chief Medical Advisor for Lustgarten and SAB advisor to the Parker Institute for Cancer Immunotherapy (PICI) and for the C3 Cancer Institute. She is a founding member of Abmeta. AHS receives royalty from Pfizer; has IP rights with Roche, Merck, Bristol Myers Squibb, EMD-Serono, Boehringer-Ingelheim, AstraZeneca, Dako and Novartis; receives consulting fees from Surface Oncology, Elstar, SQZ Biotechnologies, Selecta, Elpiscience, Monopteros, Bicara, GlaxoSmithKline and Janssen advisory boards, the Stand Up to Cancer Grant Catalyst Executive Advisory Committee and Review Panel, the Bloomberg Kimmel Institute for Cancer Immunotherapy at Johns Hopkins EAB, the Human Oncology and Pathogenesis Program at Memorial Sloan Kettering Cancer Center EAB, and the Massachusetts General Hospital Cancer Center EAB; has contracted research with Roche, Merck, AbbVie and Quark Ventures; has partner consulting fees from Roche, Bristol Myers Squibb, Xios and Origimed; and has partner ownership interest in Nextpoint, Triursus and Xios. All other authors have nothing to disclose. SITC staff (EBS) has nothing to disclose.

Figures

Figure 1
Figure 1
Future directions for irAE research. Effective clinical modeling of irAEs will require the integration of a variety of data, including: (1) standardized definitions of irAEs and tools to identify them, (2) clinical data from electronic health records that reflect the critical components of irAEs and cancer descriptions and outcomes that have been standardized using common data models to support data sharing, (3) collaborative biospecimen biobanking programs with standardized operating procedures for tissue collection, processing and storage, and (4) high-quality, high-throughput multiomics, proteomics and immunophenotyping data integration strategies that provide mechanistic information. The overall clinical modeling of irAE disease pathogenesis efforts will require multidisciplinary clinicians and scientists and the development of modeling, management and analysis strategies and data collection from a large number of organizations to represent the wide range of irAEs, particularly rare irAEs. Clinical modeling will also require data storage technologies that support integration of clinical and mechanistic data while preserving participant privacy and novel machine learning strategies to derive insights about risk factors and biomarkers of disease that can lead to new diagnostics and therapeutics for clinical care as well as support refinement and development of more effective preclinical models. irAE, immune-related adverse event.

References

    1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018;359:1350–5. 10.1126/science.aar4060 - DOI - PMC - PubMed
    1. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 2018;18:153–67. 10.1038/nri.2017.108 - DOI - PubMed
    1. Walunas TL, Lenschow DJ, Bakker CY, et al. . CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405–13. 10.1016/1074-7613(94)90071-x - DOI - PubMed
    1. Tivol EA, Borriello F, Schweitzer AN, et al. . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541–7. 10.1016/1074-7613(95)90125-6 - DOI - PubMed
    1. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–6. 10.1126/science.271.5256.1734 - DOI - PubMed

Publication types