Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 5;423(Pt A):127046.
doi: 10.1016/j.jhazmat.2021.127046. Epub 2021 Aug 28.

Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination

Affiliations

Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination

Abdul Latif Khan et al. J Hazard Mater. .

Abstract

Mangroves (Avicennia marina) growing in intertidal areas are often exposed to diesel spills, adversely damaging the ecosystem. Herein, we showed for the first time that mangrove seedlings' associations with bacteria could reprogram host-growth, physiology, and ability to degrade diesel. We found four bacterial strains [Sphingomonas sp.-LK11, Rhodococcus corynebacterioides-NZ1, Bacillus subtilis-EP1 Bacillus safensis-SH10] exhibiting significant growth during diesel degradation (2% and 5%, v/v) and higher expression of alkane monooxygenase compared to control. This is in synergy with reduced long-chain n-alkanes (C24-C30) during microbe-diesel interactions in the bioreactor. Among individual strains, SH10 exhibited significantly higher potential to improve mangrove seedling's morphology, anatomy and growth during diesel treatment in rhizosphere compared to control. This was also evidenced by reduced activities and gene expression of antioxidant enzymes (catalases, peroxidases, ascorbic peroxidases, superoxide dismutases and polyphenol peroxidases) and lipid peroxidation during microbe-diesel interactions. Interestingly, we noticed significantly higher soil-enzyme activities (phosphatases and glucosidases) and essential metabolites in seedling's rhizosphere after bacteria and diesel treatments. Degradation of longer n-alkane chains in the rhizosphere also revealed a potential pathway that benefits mangroves by bacterial strains during diesel contaminations. Current results support microbes' application to rhizoengineer plant growth, responses, and phytoextraction abilities in environments contaminated with diesel spills. AVAILABILITY OF DATA AND MATERIALS: The datasets generated during the current study are available in the NCBI GenBank ((https://www.ncbi.nlm.nih.gov).

Keywords: Antioxidant activities; Bacteria; Bioreactor; Diesel degradation; GCMS; Gene expression; Mangrove.

PubMed Disclaimer

Publication types

LinkOut - more resources