Colloidal dispersion of poly(ionic liquid)/Cu composite particles for protective surface coating against SAR-CoV-2
- PMID: 34485979
- PMCID: PMC8242609
- DOI: 10.1002/nano.202100069
Colloidal dispersion of poly(ionic liquid)/Cu composite particles for protective surface coating against SAR-CoV-2
Abstract
Herein, we report a waterproof anti-SARS-CoV-2 protective film prepared by spray-coating of an aqueous colloidal dispersion of poly(ionic liquid)/copper (PIL/Cu) composite nanoparticles onto a substrate. The PIL dispersion was prepared by suspension polymerization of 3-dodecyl-1-vinylimdiazolium bromide in water at 70°C. The copper acetate salt was added into the PIL nanoparticle dispersion and in situ reduced into copper nanoparticles anchoring onto the PIL nanoparticles. Despite being waterborne, the PIL in bulk is intrinsically insoluble in water and the formed coating is stable in water. The formed surface coating by PIL/copper composite nanoparticles was able to deactivate SARS-CoV-2 virions by 90.0% in 30 minutes and thus may effectively prevent the spread of SARS-CoV-2 through surface contact. This method may provide waterborne dispersions for a broad range of antivirus protective surface coatings for both outdoor and indoor applications.
Keywords: SARS‐CoV‐2; antivirus coating; colloidal dispersion; copper nanoparticle; poly(ionic liquid).
© 2021 The Authors. Nano Select published by Wiley‐VCH GmbH.
Figures




Similar articles
-
Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell.Macromol Rapid Commun. 2013 Nov;34(21):1721-7. doi: 10.1002/marc.201300628. Epub 2013 Oct 8. Macromol Rapid Commun. 2013. PMID: 24186465
-
Preparation and Morphology Control of Poly(ionic liquid) Particles.Langmuir. 2020 Aug 4;36(30):8668-8679. doi: 10.1021/acs.langmuir.0c01182. Epub 2020 Jul 18. Langmuir. 2020. PMID: 32633982
-
Preparation of submicrometer-sized quaternary ammonium-based poly(ionic liquid) particles via emulsion polymerization and switchable responsiveness of emulsion film.Langmuir. 2014 Apr 1;30(12):3406-12. doi: 10.1021/la500282n. Epub 2014 Mar 21. Langmuir. 2014. PMID: 24655108
-
Preparation of polymer/poly(ionic liquid) composite particles by seeded dispersion polymerization.Langmuir. 2013 Sep 10;29(36):11284-9. doi: 10.1021/la402486n. Epub 2013 Aug 26. Langmuir. 2013. PMID: 23931151
-
Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu+).Appl Environ Microbiol. 2021 Nov 24;87(24):e0182421. doi: 10.1128/AEM.01824-21. Epub 2021 Oct 6. Appl Environ Microbiol. 2021. PMID: 34613751 Free PMC article.
Cited by
-
Superrepellent Doubly Reentrant Geometry Promotes Antibiofouling and Prevention of Coronavirus Contamination.Adv Mater Technol. 2022 Aug 5:2200387. doi: 10.1002/admt.202200387. Online ahead of print. Adv Mater Technol. 2022. PMID: 36247709 Free PMC article.
-
Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces.Nanomaterials (Basel). 2021 Jul 13;11(7):1820. doi: 10.3390/nano11071820. Nanomaterials (Basel). 2021. PMID: 34361206 Free PMC article.
-
Generation of zinc ion-rich surface via in situ growth of ZIF-8 particle: Microorganism immobilization onto fabric surface for prohibit hospital-acquired infection.Chem Eng J. 2022 Oct 15;446:137054. doi: 10.1016/j.cej.2022.137054. Epub 2022 May 18. Chem Eng J. 2022. PMID: 35601362 Free PMC article.
References
-
- Rai P. K., Usmani Z., Thakur V. K., Gupta V. K., Mishra Y. K., Curr. Res. Green Sustain. Chem. 2020, 3, 100011.
-
- Talebian S., Wallace G. G., Schroeder A., Stellacci F., Conde J., Nat. Nanotechnol. 2020, 15, 618. - PubMed
-
- Sun Z., Ostrikov K. (Ken), Sustain. Mater. Technol. 2020, 25, e00203.
-
- Das Jana I., Kumbhakar P., Banerjee S., Gowda C. C., Kedia N., Kuila S. K., Banerjee S., Das N. C., Das A. K., Manna I., Tiwary C. S., Mondal A., ACS Appl. Nano Mater. 2021, 4, 352.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous